vllm/examples/offline_inference/encoder_decoder_multimodal.py

159 lines
4.5 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
"""
This example shows how to use vLLM for running offline inference with
the explicit/implicit prompt format on enc-dec LMMs for text generation.
"""
import time
from vllm import LLM, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.assets.image import ImageAsset
from vllm.utils import FlexibleArgumentParser
def run_florence2():
# Create a Florence-2 encoder/decoder model instance
llm = LLM(
model="microsoft/Florence-2-large",
tokenizer="facebook/bart-large",
max_num_seqs=8,
trust_remote_code=True,
limit_mm_per_prompt={"image": 1},
dtype="half",
)
prompts = [
{ # implicit prompt with task token
"prompt": "<DETAILED_CAPTION>",
"multi_modal_data": {
"image": ImageAsset("stop_sign").pil_image
},
},
{ # explicit encoder/decoder prompt
"encoder_prompt": {
"prompt": "Describe in detail what is shown in the image.",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image
},
},
"decoder_prompt": "",
},
]
return llm, prompts
def run_mllama():
# Create a Mllama encoder/decoder model instance
llm = LLM(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
max_model_len=4096,
max_num_seqs=2,
limit_mm_per_prompt={"image": 1},
dtype="half",
)
prompts = [
{ # Implicit prompt
"prompt": "<|image|><|begin_of_text|>What is the content of this image?", # noqa: E501
"multi_modal_data": {
"image": ImageAsset("stop_sign").pil_image,
},
},
{ # Explicit prompt
"encoder_prompt": {
"prompt": "<|image|>",
"multi_modal_data": {
"image": ImageAsset("stop_sign").pil_image,
},
},
"decoder_prompt": "<|image|><|begin_of_text|>Please describe the image.", # noqa: E501
},
]
return llm, prompts
def run_whisper():
# Create a Whisper encoder/decoder model instance
llm = LLM(
model="openai/whisper-large-v3-turbo",
max_model_len=448,
max_num_seqs=16,
limit_mm_per_prompt={"audio": 1},
dtype="half",
)
prompts = [
{ # Test implicit prompt
"prompt": "<|startoftranscript|>",
"multi_modal_data": {
"audio": AudioAsset("mary_had_lamb").audio_and_sample_rate,
},
},
{ # Test explicit encoder/decoder prompt
"encoder_prompt": {
"prompt": "",
"multi_modal_data": {
"audio": AudioAsset("winning_call").audio_and_sample_rate,
},
},
"decoder_prompt": "<|startoftranscript|>",
}
]
return llm, prompts
model_example_map = {
"florence2": run_florence2,
"mllama": run_mllama,
"whisper": run_whisper,
}
def main(args):
model = args.model_type
if model not in model_example_map:
raise ValueError(f"Model type {model} is not supported.")
llm, prompts = model_example_map[model]()
# Create a sampling params object.
sampling_params = SamplingParams(
temperature=0,
top_p=1.0,
max_tokens=64,
)
start = time.time()
# Generate output tokens from the prompts. The output is a list of
# RequestOutput objects that contain the prompt, generated
# text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Decoder prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")
duration = time.time() - start
print("Duration:", duration)
print("RPS:", len(prompts) / duration)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Demo on using vLLM for offline inference with '
'vision language models for text generation')
parser.add_argument('--model-type',
'-m',
type=str,
default="mllama",
choices=model_example_map.keys(),
help='Huggingface "model_type".')
args = parser.parse_args()
main(args)