2024-05-02 02:13:03 +08:00
|
|
|
import torch
|
|
|
|
|
2024-05-03 17:47:07 -07:00
|
|
|
from vllm.sequence import ExecuteModelRequest
|
2024-05-02 02:13:03 +08:00
|
|
|
from vllm.spec_decode.ngram_worker import NGramWorker
|
|
|
|
from vllm.spec_decode.top1_proposer import Top1Proposer
|
|
|
|
|
2024-05-03 17:47:07 -07:00
|
|
|
from .utils import create_seq_group_metadata_from_prompts, create_worker
|
2024-05-02 02:13:03 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_ngram_algo_correctness_for_single_no_match():
|
|
|
|
"""Verify our ngram algo find the right candidate in the prompt
|
|
|
|
|
|
|
|
For the scenario cannot find any candidate in one single batch
|
|
|
|
"""
|
|
|
|
block_size = 32
|
|
|
|
num_gpu_blocks = 2048 // block_size
|
|
|
|
seed = 100
|
|
|
|
model_name = 'JackFram/llama-68m'
|
|
|
|
vocab_size = 32_000
|
|
|
|
device = 'cuda:0'
|
|
|
|
|
|
|
|
ngram_worker = create_worker(
|
|
|
|
NGramWorker,
|
|
|
|
model_name,
|
|
|
|
block_size,
|
|
|
|
num_gpu_blocks,
|
|
|
|
seed,
|
|
|
|
)
|
|
|
|
|
|
|
|
proposer = Top1Proposer(
|
|
|
|
worker=ngram_worker,
|
|
|
|
device=device,
|
|
|
|
vocab_size=vocab_size,
|
|
|
|
max_proposal_len=20,
|
|
|
|
)
|
|
|
|
|
2024-05-13 15:00:13 -07:00
|
|
|
# set ngram window [1, 3], which is window=1/2/3
|
|
|
|
ngram_worker.set_ngram_window_size(1, 3)
|
2024-05-02 02:13:03 +08:00
|
|
|
|
|
|
|
prompts = [
|
|
|
|
# shall find no candidate
|
|
|
|
[1, 2, 3, 4, 5, 6, 7],
|
|
|
|
]
|
|
|
|
|
|
|
|
proposal_len = 5
|
2024-05-04 02:20:12 +09:00
|
|
|
final_prompt_lens = [len(prompt) + proposal_len for prompt in prompts]
|
2024-05-03 17:47:07 -07:00
|
|
|
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
|
|
|
|
prompts,
|
|
|
|
num_gpu_blocks,
|
|
|
|
block_size,
|
|
|
|
final_prompt_lens=final_prompt_lens)
|
|
|
|
|
|
|
|
proposals = proposer.get_proposals(execute_model_req=ExecuteModelRequest(
|
|
|
|
seq_group_metadata_list=seq_group_metadata_list,
|
|
|
|
num_lookahead_slots=proposal_len), )
|
2024-05-02 02:13:03 +08:00
|
|
|
|
|
|
|
assert torch.is_tensor(proposals.proposal_token_ids)
|
|
|
|
assert torch.is_tensor(proposals.proposal_probs)
|
|
|
|
|
|
|
|
assert proposals.proposal_token_ids.shape == torch.Size([1, proposal_len])
|
|
|
|
assert proposals.proposal_probs.shape[:-1] == torch.Size([1, proposal_len])
|
|
|
|
assert proposals.proposal_lens.shape == torch.Size([1])
|
|
|
|
assert proposals.proposal_lens.tolist() == [0]
|
|
|
|
|
|
|
|
|
|
|
|
def test_ngram_algo_correctness_for_batches_not_match_all():
|
|
|
|
"""Verify our ngram algo find the right candidate in the prompt
|
|
|
|
|
|
|
|
For the scenario find some candidate not full in batchs
|
|
|
|
"""
|
|
|
|
block_size = 32
|
|
|
|
num_gpu_blocks = 2048 // block_size
|
|
|
|
seed = 100
|
|
|
|
model_name = 'JackFram/llama-68m'
|
|
|
|
vocab_size = 32_000
|
|
|
|
device = 'cuda:0'
|
|
|
|
|
|
|
|
ngram_worker = create_worker(
|
|
|
|
NGramWorker,
|
|
|
|
model_name,
|
|
|
|
block_size,
|
|
|
|
num_gpu_blocks,
|
|
|
|
seed,
|
|
|
|
)
|
|
|
|
|
|
|
|
proposer = Top1Proposer(
|
|
|
|
worker=ngram_worker,
|
|
|
|
device=device,
|
|
|
|
vocab_size=vocab_size,
|
|
|
|
max_proposal_len=20,
|
|
|
|
)
|
|
|
|
|
2024-05-13 15:00:13 -07:00
|
|
|
# set ngram window [1, 3], which is window=1/2/3
|
|
|
|
ngram_worker.set_ngram_window_size(1, 3)
|
2024-05-02 02:13:03 +08:00
|
|
|
|
|
|
|
prompts = [
|
|
|
|
# shall find no candidate
|
|
|
|
[1, 2, 3, 4, 5, 6, 7],
|
|
|
|
# shall find candidate 12,13,14,15,16
|
|
|
|
[11, 12, 13, 14, 15, 16, 11],
|
|
|
|
# shall find candidate 23,24,25,26,21
|
|
|
|
[21, 21, 22, 23, 24, 25, 26, 21, 22],
|
|
|
|
# shall find candidate 34,35,36,37,38
|
|
|
|
[31, 32, 31, 32, 33, 34, 35, 36, 37, 38, 31, 32, 33],
|
|
|
|
# shall find no candidate as exceed max_proposal_len
|
|
|
|
[
|
|
|
|
31, 32, 31, 32, 31, 32, 31, 32, 31, 32, 31, 32, 33, 34, 35, 36, 37,
|
|
|
|
38, 31, 32, 33
|
|
|
|
],
|
|
|
|
]
|
|
|
|
|
|
|
|
proposal_len = 5
|
2024-05-04 02:20:12 +09:00
|
|
|
final_prompt_lens = [len(prompt) + proposal_len for prompt in prompts]
|
2024-05-03 17:47:07 -07:00
|
|
|
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
|
|
|
|
prompts,
|
|
|
|
num_gpu_blocks,
|
|
|
|
block_size,
|
|
|
|
final_prompt_lens=final_prompt_lens)
|
|
|
|
|
|
|
|
proposals = proposer.get_proposals(execute_model_req=ExecuteModelRequest(
|
|
|
|
seq_group_metadata_list=seq_group_metadata_list,
|
|
|
|
num_lookahead_slots=proposal_len), )
|
2024-05-02 02:13:03 +08:00
|
|
|
|
|
|
|
assert torch.is_tensor(proposals.proposal_token_ids)
|
|
|
|
assert torch.is_tensor(proposals.proposal_probs)
|
|
|
|
|
|
|
|
assert proposals.proposal_token_ids.shape == torch.Size([5, proposal_len])
|
|
|
|
assert proposals.proposal_probs.shape[:-1] == torch.Size([5, proposal_len])
|
|
|
|
assert proposals.proposal_lens.shape == torch.Size([5])
|
|
|
|
|
2024-05-13 15:00:13 -07:00
|
|
|
# the first sequence has no match so proposal_len should be overwritten to 0
|
2024-05-02 02:13:03 +08:00
|
|
|
assert proposals.proposal_lens.tolist(
|
2024-05-13 15:00:13 -07:00
|
|
|
) == [0] + [proposal_len for _ in range(3)] + [0]
|
2024-05-02 02:13:03 +08:00
|
|
|
|
|
|
|
for i in range(proposal_len):
|
2024-05-13 15:00:13 -07:00
|
|
|
assert proposals.proposal_token_ids[0][i] == -1
|
2024-05-02 02:13:03 +08:00
|
|
|
assert proposals.proposal_token_ids[1][i] == prompts[1][i + 1]
|
|
|
|
assert proposals.proposal_token_ids[2][i] == prompts[2][i + 3]
|
|
|
|
assert proposals.proposal_token_ids[3][i] == prompts[3][i + 5]
|
|
|
|
assert proposals.proposal_token_ids[4][i] == -1
|
|
|
|
|
|
|
|
|
|
|
|
def test_ngram_algo_correctness_for_batches_match_all():
|
|
|
|
"""Verify our ngram algo find the right candidate in the prompt
|
|
|
|
|
|
|
|
For the scenario find candidate in all batchs
|
|
|
|
"""
|
|
|
|
|
|
|
|
block_size = 32
|
|
|
|
num_gpu_blocks = 2048 // block_size
|
|
|
|
seed = 100
|
|
|
|
model_name = 'JackFram/llama-68m'
|
|
|
|
vocab_size = 32_000
|
|
|
|
device = 'cuda:0'
|
|
|
|
|
|
|
|
ngram_worker = create_worker(
|
|
|
|
NGramWorker,
|
|
|
|
model_name,
|
|
|
|
block_size,
|
|
|
|
num_gpu_blocks,
|
|
|
|
seed,
|
|
|
|
)
|
|
|
|
|
|
|
|
proposer = Top1Proposer(
|
|
|
|
worker=ngram_worker,
|
|
|
|
device=device,
|
|
|
|
vocab_size=vocab_size,
|
|
|
|
max_proposal_len=20,
|
|
|
|
)
|
|
|
|
|
2024-05-13 15:00:13 -07:00
|
|
|
# set ngram window [0, 3], which is window=1/2/3
|
|
|
|
ngram_worker.set_ngram_window_size(1, 3)
|
2024-05-02 02:13:03 +08:00
|
|
|
|
|
|
|
prompts = [
|
|
|
|
# shall find candidate 12,13,14,15,16
|
|
|
|
[11, 12, 13, 14, 15, 16, 11],
|
|
|
|
# shall find candidate 23,24,25,26,21
|
|
|
|
[21, 21, 22, 23, 24, 25, 26, 21, 22],
|
|
|
|
# shall find candidate 34,35,36,37,38
|
|
|
|
[31, 32, 31, 32, 33, 34, 35, 36, 37, 38, 31, 32, 33],
|
|
|
|
]
|
|
|
|
|
|
|
|
proposal_len = 5
|
2024-05-04 02:20:12 +09:00
|
|
|
final_prompt_lens = [len(prompt) + proposal_len for prompt in prompts]
|
2024-05-03 17:47:07 -07:00
|
|
|
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
|
|
|
|
prompts,
|
|
|
|
num_gpu_blocks,
|
|
|
|
block_size,
|
|
|
|
final_prompt_lens=final_prompt_lens)
|
|
|
|
|
|
|
|
proposals = proposer.get_proposals(execute_model_req=ExecuteModelRequest(
|
|
|
|
seq_group_metadata_list=seq_group_metadata_list,
|
|
|
|
num_lookahead_slots=proposal_len), )
|
2024-05-02 02:13:03 +08:00
|
|
|
|
|
|
|
assert torch.is_tensor(proposals.proposal_token_ids)
|
|
|
|
assert torch.is_tensor(proposals.proposal_probs)
|
|
|
|
|
|
|
|
assert proposals.proposal_token_ids.shape == torch.Size([3, proposal_len])
|
|
|
|
assert proposals.proposal_probs.shape[:-1] == torch.Size([3, proposal_len])
|
|
|
|
assert proposals.proposal_lens.shape == torch.Size([3])
|
|
|
|
|
|
|
|
assert proposals.proposal_lens.tolist() == [proposal_len for _ in range(3)]
|
|
|
|
|
|
|
|
for i in range(proposal_len):
|
|
|
|
assert proposals.proposal_token_ids[0][i] == prompts[0][i + 1]
|
|
|
|
assert proposals.proposal_token_ids[1][i] == prompts[1][i + 3]
|
|
|
|
assert proposals.proposal_token_ids[2][i] == prompts[2][i + 5]
|