2024-03-25 23:59:47 +09:00
|
|
|
from unittest.mock import MagicMock
|
2024-03-08 23:32:46 -08:00
|
|
|
|
|
|
|
import pytest
|
2024-07-01 00:33:05 -07:00
|
|
|
import torch
|
2024-03-25 23:59:47 +09:00
|
|
|
|
2024-07-01 00:33:05 -07:00
|
|
|
from vllm.model_executor.layers.rejection_sampler import RejectionSampler
|
2024-08-29 07:18:13 +02:00
|
|
|
from vllm.model_executor.layers.sampler import _get_ranks
|
2024-07-01 00:33:05 -07:00
|
|
|
from vllm.model_executor.layers.typical_acceptance_sampler import (
|
|
|
|
TypicalAcceptanceSampler)
|
2024-06-20 20:23:12 -04:00
|
|
|
from vllm.sequence import SequenceGroupMetadata, get_all_seq_ids
|
2024-08-29 07:18:13 +02:00
|
|
|
from vllm.spec_decode.util import (get_sampled_token_logprobs,
|
|
|
|
split_batch_by_proposal_len)
|
2024-03-08 23:32:46 -08:00
|
|
|
|
|
|
|
|
|
|
|
def test_get_all_seq_ids():
|
|
|
|
"""Verify get_all_seq_ids extracts all seq ids.
|
|
|
|
"""
|
|
|
|
expected_seq_ids = list(range(10)) + list(range(100, 110))
|
|
|
|
|
|
|
|
seq_group_metadata_list = [
|
|
|
|
SequenceGroupMetadata(
|
|
|
|
request_id=str(seq_id),
|
|
|
|
is_prompt=True,
|
|
|
|
seq_data={
|
|
|
|
seq_id: MagicMock(),
|
|
|
|
},
|
|
|
|
sampling_params=MagicMock(),
|
|
|
|
block_tables={
|
|
|
|
seq_id: MagicMock(),
|
|
|
|
},
|
|
|
|
lora_request=None,
|
|
|
|
) for seq_id in expected_seq_ids
|
|
|
|
]
|
|
|
|
|
|
|
|
actual_seq_ids = get_all_seq_ids(seq_group_metadata_list)
|
|
|
|
assert actual_seq_ids == expected_seq_ids
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def fake_sequence_group_metadata():
|
|
|
|
seq_ids = list(range(3))
|
|
|
|
return [
|
|
|
|
SequenceGroupMetadata(
|
|
|
|
request_id=str(i),
|
|
|
|
is_prompt=True,
|
|
|
|
seq_data={
|
|
|
|
i: MagicMock(),
|
|
|
|
},
|
|
|
|
sampling_params=MagicMock(),
|
|
|
|
block_tables={
|
|
|
|
i: MagicMock(),
|
|
|
|
},
|
|
|
|
lora_request=None,
|
|
|
|
) for i in seq_ids
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def test_filter_zero_length_proposals(fake_sequence_group_metadata):
|
|
|
|
proposal_lens = [0, 1, 0]
|
2024-08-25 15:45:14 -07:00
|
|
|
_, (filtered_groups,
|
|
|
|
indices) = split_batch_by_proposal_len(fake_sequence_group_metadata,
|
|
|
|
proposal_lens)
|
2024-03-08 23:32:46 -08:00
|
|
|
|
|
|
|
expected_groups = [
|
|
|
|
fake_sequence_group_metadata[0], fake_sequence_group_metadata[2]
|
|
|
|
]
|
|
|
|
expected_indices = [0, 2]
|
|
|
|
|
|
|
|
assert filtered_groups == expected_groups
|
|
|
|
assert indices == expected_indices
|
|
|
|
|
|
|
|
|
|
|
|
def test_filter_non_zero_length_proposals(fake_sequence_group_metadata):
|
|
|
|
proposal_lens = [0, 1, 2]
|
2024-08-25 15:45:14 -07:00
|
|
|
(filtered_groups,
|
|
|
|
indices), _ = split_batch_by_proposal_len(fake_sequence_group_metadata,
|
|
|
|
proposal_lens)
|
2024-03-08 23:32:46 -08:00
|
|
|
|
|
|
|
expected_groups = [
|
|
|
|
fake_sequence_group_metadata[1], fake_sequence_group_metadata[2]
|
|
|
|
]
|
|
|
|
expected_indices = [1, 2]
|
|
|
|
|
|
|
|
assert filtered_groups == expected_groups
|
|
|
|
assert indices == expected_indices
|
|
|
|
|
|
|
|
|
|
|
|
def test_empty_inputs():
|
2024-08-25 15:45:14 -07:00
|
|
|
_, (filtered_groups, indices) = split_batch_by_proposal_len([], [])
|
2024-03-08 23:32:46 -08:00
|
|
|
|
|
|
|
assert filtered_groups == []
|
|
|
|
assert indices == []
|
|
|
|
|
|
|
|
|
|
|
|
def test_all_zero_with_non_zero_filter(fake_sequence_group_metadata):
|
|
|
|
proposal_lens = [0, 0, 0]
|
2024-08-25 15:45:14 -07:00
|
|
|
(filtered_groups,
|
|
|
|
indices), _ = split_batch_by_proposal_len(fake_sequence_group_metadata,
|
|
|
|
proposal_lens)
|
2024-03-08 23:32:46 -08:00
|
|
|
|
|
|
|
assert filtered_groups == []
|
|
|
|
assert indices == []
|
|
|
|
|
|
|
|
|
|
|
|
def test_all_non_zero_with_zero_filter(fake_sequence_group_metadata):
|
|
|
|
proposal_lens = [1, 1, 1]
|
2024-08-25 15:45:14 -07:00
|
|
|
_, (filtered_groups,
|
|
|
|
indices) = split_batch_by_proposal_len(fake_sequence_group_metadata,
|
|
|
|
proposal_lens)
|
2024-03-08 23:32:46 -08:00
|
|
|
|
|
|
|
assert filtered_groups == []
|
|
|
|
assert indices == []
|
2024-07-01 00:33:05 -07:00
|
|
|
|
|
|
|
|
|
|
|
def mock_spec_decode_sampler(acceptance_sampler_method):
|
|
|
|
"""
|
|
|
|
Returns either a RejectionSampler or TypicalAcceptanceSampler
|
|
|
|
object depending on whether acceptance_sampler_method is
|
|
|
|
'rejection_sampler' or 'typical_acceptance_sampler' respectively.
|
|
|
|
"""
|
|
|
|
if acceptance_sampler_method == "rejection_sampler":
|
|
|
|
sampler = MagicMock(spec=RejectionSampler)
|
|
|
|
sampler.token_id_dtype = torch.int64
|
|
|
|
return sampler
|
|
|
|
elif acceptance_sampler_method == "typical_acceptance_sampler":
|
|
|
|
sampler = MagicMock(spec=TypicalAcceptanceSampler)
|
|
|
|
sampler.token_id_dtype = torch.int64
|
|
|
|
return sampler
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Invalid sampler name {acceptance_sampler_method}")
|
2024-08-29 07:18:13 +02:00
|
|
|
|
|
|
|
|
|
|
|
def test_get_sampled_token_logprobs():
|
|
|
|
"""Verify get_sampled_token_logprobs returns consistent rankings
|
|
|
|
with regular get_ranks when probabilities match exactly.
|
|
|
|
"""
|
|
|
|
logprob_tensor = torch.tensor(
|
|
|
|
[[[-.1, -.1]] * 2]) # shape (num_steps, batch_size, vocab_size)
|
|
|
|
sampled_token_tensor = torch.tensor([[1,
|
|
|
|
0]]) # shape (num_steps, batch_size)
|
|
|
|
ranks_spec_dec, _ = get_sampled_token_logprobs(logprob_tensor,
|
|
|
|
sampled_token_tensor)
|
|
|
|
|
|
|
|
ranks_regular = _get_ranks(logprob_tensor.reshape((2, -1)),
|
|
|
|
sampled_token_tensor.reshape(-1))
|
|
|
|
|
|
|
|
assert torch.equal(ranks_spec_dec.reshape(-1), ranks_regular)
|