vllm/tests/prompt_adapter/test_multi_adapter_inference.py

54 lines
2.0 KiB
Python
Raw Normal View History

from vllm import EngineArgs, LLMEngine, SamplingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
MODEL_PATH = "bigscience/bloomz-560m"
pa_path = 'stevhliu/bloomz-560m_PROMPT_TUNING_CAUSAL_LM'
pa_path2 = 'swapnilbp/angry_tweet_ptune'
def do_sample(engine):
prompts = [
("Tweet text: I have complaints! Label: ",
SamplingParams(temperature=0.0, max_tokens=3, stop_token_ids=[3]),
PromptAdapterRequest("hate_speech", 1, pa_path2, 8)),
("Tweet text: I have no problems Label: ",
SamplingParams(temperature=0.0, max_tokens=3, stop_token_ids=[3]),
PromptAdapterRequest("hate_speech2", 2, pa_path2, 8)),
("Tweet text: I have complaints! Label: ",
SamplingParams(temperature=0.0, max_tokens=3), None),
("Tweet text: I have no problems Label: ",
SamplingParams(temperature=0.0, max_tokens=3, stop_token_ids=[3]),
PromptAdapterRequest("complain", 3, pa_path, 8)),
]
request_id = 0
results = set()
while prompts or engine.has_unfinished_requests():
if prompts:
prompt, sampling_params, pa_request = prompts.pop(0)
engine.add_request(str(request_id),
prompt,
sampling_params,
prompt_adapter_request=pa_request)
request_id += 1
request_outputs = engine.step()
for request_output in request_outputs:
if request_output.finished:
results.add(request_output.outputs[0].text)
return results
def test_multi_prompt_adapters():
engine_args = EngineArgs(model=MODEL_PATH,
max_prompt_adapters=3,
enable_prompt_adapter=True,
max_prompt_adapter_token=8)
engine = LLMEngine.from_engine_args(engine_args)
expected_output = {
' quot;I', 'hate speech', 'no complaint', 'not hate speech'
}
assert do_sample(engine) == expected_output