vllm/tests/models/test_oot_registration.py

81 lines
2.5 KiB
Python
Raw Normal View History

import os
import pytest
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from ..utils import fork_new_process_for_each_test
@fork_new_process_for_each_test
def test_plugin(dummy_opt_path):
os.environ["VLLM_PLUGINS"] = ""
with pytest.raises(Exception) as excinfo:
LLM(model=dummy_opt_path, load_format="dummy")
assert "are not supported for now" in str(excinfo.value)
@fork_new_process_for_each_test
def test_oot_registration_text_generation(dummy_opt_path):
os.environ["VLLM_PLUGINS"] = "register_dummy_model"
prompts = ["Hello, my name is", "The text does not matter"]
sampling_params = SamplingParams(temperature=0)
llm = LLM(model=dummy_opt_path, load_format="dummy")
first_token = llm.get_tokenizer().decode(0)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
generated_text = output.outputs[0].text
# make sure only the first token is generated
rest = generated_text.replace(first_token, "")
assert rest == ""
@fork_new_process_for_each_test
def test_oot_registration_embedding(dummy_gemma2_embedding_path):
os.environ["VLLM_PLUGINS"] = "register_dummy_model"
prompts = ["Hello, my name is", "The text does not matter"]
llm = LLM(model=dummy_gemma2_embedding_path, load_format="dummy")
outputs = llm.embed(prompts)
for output in outputs:
assert all(v == 0 for v in output.outputs.embedding)
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
@fork_new_process_for_each_test
def test_oot_registration_multimodal(dummy_llava_path):
os.environ["VLLM_PLUGINS"] = "register_dummy_model"
prompts = [{
"prompt": "What's in the image?<image>",
"multi_modal_data": {
"image": image
},
}, {
"prompt": "Describe the image<image>",
"multi_modal_data": {
"image": image
},
}]
sampling_params = SamplingParams(temperature=0)
llm = LLM(model=dummy_llava_path,
load_format="dummy",
max_num_seqs=1,
trust_remote_code=True,
gpu_memory_utilization=0.98,
max_model_len=4096,
enforce_eager=True,
limit_mm_per_prompt={"image": 1})
first_token = llm.get_tokenizer().decode(0)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
generated_text = output.outputs[0].text
# make sure only the first token is generated
rest = generated_text.replace(first_token, "")
assert rest == ""