vllm/tests/models/embedding/language/test_cls_models.py

46 lines
1.3 KiB
Python
Raw Normal View History

"""Compare the classification outputs of HF and vLLM models.
Run `pytest tests/models/test_cls_models.py`.
"""
import pytest
import torch
from transformers import AutoModelForSequenceClassification
@pytest.mark.parametrize(
"model",
[
pytest.param("jason9693/Qwen2.5-1.5B-apeach",
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
],
)
@pytest.mark.parametrize("dtype", ["float"])
def test_classification_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
) -> None:
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.classify(example_prompts)
# This test is for verifying whether the model's extra_repr
# can be printed correctly.
def print_model(model):
print(model)
vllm_model.apply_model(print_model)
with hf_runner(model,
dtype=dtype,
auto_cls=AutoModelForSequenceClassification) as hf_model:
hf_outputs = hf_model.classify(example_prompts)
# check logits difference
for hf_output, vllm_output in zip(hf_outputs, vllm_outputs):
hf_output = torch.tensor(hf_output)
vllm_output = torch.tensor(vllm_output)
assert torch.allclose(hf_output, vllm_output, 1e-3)