vllm/tests/distributed/test_ca_buffer_sharing.py

60 lines
1.7 KiB
Python
Raw Normal View History

# can only run on machines with p2p access across GPUs
# can only run with torchrun:
# torchrun --nproc_per_node=2 tests/distributed/test_ca_buffer_sharing.py
import ctypes
import torch
import torch.distributed as dist
from vllm.distributed.device_communicators.cuda_wrapper import CudaRTLibrary
from vllm.distributed.device_communicators.custom_all_reduce import ( # noqa
CustomAllreduce)
# create a cpu process group for communicating metadata (ipc handle)
dist.init_process_group(backend="gloo")
rank = local_rank = dist.get_rank()
world_size = dist.get_world_size()
# every process sets its own device (differently)
lib = CudaRTLibrary()
lib.cudaSetDevice(rank)
buffer_size_in_bytes = 1024
byte_value = 2 # the value we write to the buffer for verification
pointers = CustomAllreduce.create_shared_buffer(buffer_size_in_bytes)
print(f"Rank {rank} has pointers {pointers}")
dist.barrier()
torch.cuda.synchronize()
if rank == 0:
# the first rank tries to write to all buffers
for p in pointers:
pointer = ctypes.c_void_p(p)
lib.cudaMemset(pointer, byte_value, buffer_size_in_bytes)
dist.barrier()
torch.cuda.synchronize()
host_data = (ctypes.c_char * buffer_size_in_bytes)()
# all ranks read from all buffers, and check if the data is correct
for p in pointers:
pointer = ctypes.c_void_p(p)
lib.cudaMemcpy(host_data, pointer, buffer_size_in_bytes)
for i in range(buffer_size_in_bytes):
assert ord(host_data[i]) == byte_value, (
f"Rank {rank} failed"
f" to verify buffer {p}. Expected {byte_value}, "
f"got {ord(host_data[i])}")
print(f"Rank {rank} verified all buffers")
dist.barrier()
torch.cuda.synchronize()
CustomAllreduce.free_shared_buffer(pointers)