vllm/benchmarks/benchmark_latency.py

102 lines
3.6 KiB
Python
Raw Normal View History

"""Benchmark the latency of processing a single batch of requests."""
import argparse
import time
import numpy as np
import torch
2023-05-22 17:03:40 -07:00
from tqdm import tqdm
2023-06-17 03:07:40 -07:00
from vllm import LLM, SamplingParams
def main(args: argparse.Namespace):
2023-05-22 17:03:40 -07:00
print(args)
# Process all the requests in a single batch if possible.
# NOTE(woosuk): If the request cannot be processed in a single batch,
2023-06-17 17:25:21 +08:00
# the engine will automatically process the request in multiple batches.
2023-05-22 17:03:40 -07:00
llm = LLM(
model=args.model,
tokenizer=args.tokenizer,
quantization=args.quantization,
2023-05-22 17:03:40 -07:00
tensor_parallel_size=args.tensor_parallel_size,
max_num_seqs=args.batch_size,
max_num_batched_tokens=args.batch_size * args.input_len,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
2023-05-22 17:03:40 -07:00
)
2023-05-11 15:45:30 -07:00
sampling_params = SamplingParams(
n=args.n,
temperature=0.0 if args.use_beam_search else 1.0,
top_p=1.0,
use_beam_search=args.use_beam_search,
2023-05-22 17:03:40 -07:00
ignore_eos=True,
2023-05-11 15:45:30 -07:00
max_tokens=args.output_len,
)
print(sampling_params)
2023-05-22 17:03:40 -07:00
dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
2023-05-22 17:03:40 -07:00
def run_to_completion(profile: bool = False):
if profile:
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
2023-05-22 17:03:40 -07:00
2023-06-04 12:52:41 -07:00
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
2023-05-22 17:03:40 -07:00
use_tqdm=False)
end_time = time.perf_counter()
latency = end_time - start_time
if profile:
torch.cuda.cudart().cudaProfilerStop()
return latency
2023-05-22 17:03:40 -07:00
print("Warming up...")
run_to_completion(profile=False)
# Benchmark.
latencies = []
2023-05-22 17:03:40 -07:00
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile=False))
print(f'Avg latency: {np.mean(latencies)} seconds')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
2023-05-22 17:03:40 -07:00
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
2023-05-22 17:03:40 -07:00
parser.add_argument('--model', type=str, default='facebook/opt-125m')
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'squeezellm', None],
default=None)
2023-05-22 17:03:40 -07:00
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--n',
type=int,
default=1,
2023-05-22 17:03:40 -07:00
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters',
type=int,
default=3,
2023-05-22 17:03:40 -07:00
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
args = parser.parse_args()
main(args)