vllm/tests/quantization/test_lm_head.py

46 lines
1.6 KiB
Python
Raw Normal View History

"""Tests whether gptq models with quantized lm_head can be loaded.
Run `pytest tests/quantization/test_quant_lm_head_true.py --forked`.
"""
from typing import Tuple
import pytest
import torch
from vllm.model_executor.layers.linear import UnquantizedLinearMethod
from vllm.model_executor.layers.quantization.gptq import GPTQLinearMethod
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQMarlinLinearMethod)
from vllm.model_executor.layers.quantization.marlin import MarlinLinearMethod
PROMPT = "On the surface of Mars, we found"
MODELS_QUANT = [(
"LnL-AI/TinyLlama-1.1B-intermediate-step-1341k-3T-autoround-lm_head-symFalse",
True), ("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ", False),
("neuralmagic/Meta-Llama-3-8B-Instruct-FP8", False)]
@pytest.mark.parametrize("model_lm_head_quant", MODELS_QUANT)
def test_lm_head(
vllm_runner,
model_lm_head_quant: Tuple[str, bool],
) -> None:
model, lm_head_quantized = model_lm_head_quant
vllm_model = vllm_runner(model, dtype=torch.float16, max_model_len=2048)
lm_head_layer = (vllm_model.model.llm_engine.model_executor.driver_worker.
model_runner.model.lm_head)
if lm_head_quantized:
assert isinstance(
lm_head_layer.linear_method,
(GPTQLinearMethod, GPTQMarlinLinearMethod, MarlinLinearMethod))
else:
assert isinstance(lm_head_layer.linear_method, UnquantizedLinearMethod)
print(
vllm_model.generate_greedy(prompts=["Hello my name is"],
max_tokens=10)[0][1])
del vllm_model