WARNING 05-09 00:49:33 scheduler.py:1057 Sequence group 0 is preempted by PreemptionMode.SWAP mode because there is not enough KV cache space. This can affect the end-to-end performance. Increase gpu_memory_utilization or tensor_parallel_size to provide more KV cache memory. total_cumulative_preemption_cnt=1
While this mechanism ensures system robustness, preemption and recomputation can adversely affect end-to-end latency.
If you frequently encounter preemptions from the vLLM engine, consider the following actions:
- Increase `gpu_memory_utilization`. The vLLM pre-allocates GPU cache by using gpu_memory_utilization% of memory. By increasing this utilization, you can provide more KV cache space.
- Decrease `max_num_seqs` or `max_num_batched_tokens`. This can reduce the number of concurrent requests in a batch, thereby requiring less KV cache space.
- Increase `tensor_parallel_size`. This approach shards model weights, so each GPU has more memory available for KV cache.
You can also monitor the number of preemption requests through Prometheus metrics exposed by the vLLM. Additionally, you can log the cumulative number of preemption requests by setting disable_log_stats=False.
vLLM supports an experimental feature chunked prefill. Chunked prefill allows to chunk large prefills into smaller chunks and batch them together with decode requests.
You can enable the feature by specifying `--enable-chunked-prefill` in the command line or setting `enable_chunked_prefill=True` in the LLM constructor.
- If `max_num_batched_tokens` is the same as `max_model_len`, that's almost the equivalent to the default scheduling policy (except that it still prioritizes decodes).