vllm/tests/quantization/test_configs.py

75 lines
3.1 KiB
Python
Raw Normal View History

"""Tests whether Marlin models can be loaded from the autogptq config.
Run `pytest tests/quantization/test_configs.py --forked`.
"""
from dataclasses import dataclass
from typing import Tuple
import pytest
from vllm.config import ModelConfig
@dataclass
class ModelPair:
model_marlin: str
model_gptq: str
# Model Id // Quantization Arg // Expected Type
MODEL_ARG_EXPTYPES = [
# AUTOGPTQ
# compat: autogptq <=0.7.1 is_marlin_format: bool
# Model Serialized in Marlin Format should always use Marlin kernel.
("neuralmagic/TinyLlama-1.1B-Chat-v1.0-marlin", None, "marlin"),
("neuralmagic/TinyLlama-1.1B-Chat-v1.0-marlin", "marlin", "marlin"),
("neuralmagic/TinyLlama-1.1B-Chat-v1.0-marlin", "gptq", "marlin"),
("neuralmagic/TinyLlama-1.1B-Chat-v1.0-marlin", "awq", "ERROR"),
# Model Serialized in Exllama Format.
("TheBloke/Llama-2-7B-Chat-GPTQ", None, "gptq_marlin"),
("TheBloke/Llama-2-7B-Chat-GPTQ", "marlin", "gptq_marlin"),
("TheBloke/Llama-2-7B-Chat-GPTQ", "gptq", "gptq"),
("TheBloke/Llama-2-7B-Chat-GPTQ", "awq", "ERROR"),
# compat: autogptq >=0.8.0 use checkpoint_format: str
# Model Serialized in Marlin Format should always use Marlin kernel.
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-Marlin-4bit", None, "marlin"),
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-Marlin-4bit", "marlin", "marlin"),
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-Marlin-4bit", "gptq", "marlin"),
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-Marlin-4bit", "awq", "ERROR"),
# Model Serialized in Exllama Format.
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit", None, "gptq_marlin"),
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit", "marlin", "gptq_marlin"),
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit", "gptq", "gptq"),
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit", "awq", "ERROR"),
# AUTOAWQ
("TheBloke/OpenHermes-2.5-Mistral-7B-AWQ", None, "awq_marlin"),
("TheBloke/OpenHermes-2.5-Mistral-7B-AWQ", "awq", "awq"),
("TheBloke/OpenHermes-2.5-Mistral-7B-AWQ", "marlin", "awq_marlin"),
("TheBloke/OpenHermes-2.5-Mistral-7B-AWQ", "gptq", "ERROR"),
]
@pytest.mark.parametrize("model_arg_exptype", MODEL_ARG_EXPTYPES)
def test_auto_gptq(model_arg_exptype: Tuple[str, None, str]) -> None:
model_path, quantization_arg, expected_type = model_arg_exptype
try:
model_config = ModelConfig(model_path,
model_path,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype="float16",
revision=None,
quantization=quantization_arg)
found_quantization_type = model_config.quantization
except ValueError:
found_quantization_type = "ERROR"
assert found_quantization_type == expected_type, (
f"Expected quant_type == {expected_type} for {model_path}, "
f"but found {found_quantization_type} "
f"for no --quantization {quantization_arg} case")