2024-07-20 11:39:07 -05:00
|
|
|
import os
|
2024-07-03 11:34:00 +08:00
|
|
|
import re
|
2024-06-29 23:45:54 +08:00
|
|
|
from typing import List, Optional, Tuple, Type
|
2024-06-18 10:34:33 +08:00
|
|
|
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
2024-07-03 11:34:00 +08:00
|
|
|
from vllm.multimodal.utils import rescale_image_size
|
|
|
|
from vllm.sequence import SampleLogprobs
|
2024-07-20 11:39:07 -05:00
|
|
|
from vllm.utils import is_cpu, is_hip
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-06-29 23:45:54 +08:00
|
|
|
from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
|
2024-07-03 11:34:00 +08:00
|
|
|
from .utils import check_logprobs_close
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-06-18 06:10:04 -07:00
|
|
|
pytestmark = pytest.mark.vlm
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-06-26 16:02:34 +08:00
|
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
|
|
"stop_sign":
|
2024-06-18 10:34:33 +08:00
|
|
|
"<|user|>\n<|image_1|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501
|
2024-06-26 16:02:34 +08:00
|
|
|
"cherry_blossom":
|
2024-07-03 11:34:00 +08:00
|
|
|
"<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n",
|
2024-06-26 16:02:34 +08:00
|
|
|
})
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-07-03 15:14:16 -07:00
|
|
|
models = ["microsoft/Phi-3-vision-128k-instruct"]
|
2024-06-18 10:34:33 +08:00
|
|
|
|
|
|
|
|
2024-07-03 11:34:00 +08:00
|
|
|
def vllm_to_hf_output(vllm_output: Tuple[List[int], str,
|
|
|
|
Optional[SampleLogprobs]],
|
2024-07-03 15:14:16 -07:00
|
|
|
model: str):
|
|
|
|
"""Sanitize vllm output to be comparable with hf output."""
|
|
|
|
_, output_str, out_logprobs = vllm_output
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-07-03 11:34:00 +08:00
|
|
|
output_str_without_image = re.sub(r"(<\|image_\d+\|>)+", "", output_str)
|
|
|
|
assert output_str_without_image[0] == " "
|
|
|
|
output_str_without_image = output_str_without_image[1:]
|
|
|
|
|
2024-07-04 09:58:18 +08:00
|
|
|
hf_output_str = output_str_without_image + "<|end|><|endoftext|>"
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-07-03 15:14:16 -07:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
2024-07-03 11:34:00 +08:00
|
|
|
hf_output_ids = tokenizer.encode(output_str_without_image)
|
|
|
|
assert hf_output_ids[0] == 1
|
|
|
|
hf_output_ids = hf_output_ids[1:]
|
|
|
|
|
|
|
|
return hf_output_ids, hf_output_str, out_logprobs
|
2024-06-18 10:34:33 +08:00
|
|
|
|
|
|
|
|
|
|
|
target_dtype = "half"
|
|
|
|
if is_cpu():
|
|
|
|
target_dtype = "bfloat16"
|
|
|
|
|
2024-07-20 11:39:07 -05:00
|
|
|
# ROCm Triton FA can run into shared memory issues with these models,
|
|
|
|
# use other backends in the meantime
|
|
|
|
# FIXME (mattwong, gshtrasb, hongxiayan)
|
|
|
|
if is_hip():
|
|
|
|
os.environ["VLLM_USE_TRITON_FLASH_ATTN"] = "0"
|
|
|
|
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-06-29 23:45:54 +08:00
|
|
|
def run_test(
|
|
|
|
hf_runner: Type[HfRunner],
|
|
|
|
vllm_runner: Type[VllmRunner],
|
|
|
|
image_assets: _ImageAssets,
|
2024-07-03 15:14:16 -07:00
|
|
|
model: str,
|
2024-06-29 23:45:54 +08:00
|
|
|
*,
|
2024-07-03 11:34:00 +08:00
|
|
|
size_factors: List[float],
|
2024-06-29 23:45:54 +08:00
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
2024-07-03 11:34:00 +08:00
|
|
|
num_logprobs: int,
|
2024-06-29 23:45:54 +08:00
|
|
|
tensor_parallel_size: int,
|
|
|
|
distributed_executor_backend: Optional[str] = None,
|
|
|
|
):
|
2024-06-18 10:34:33 +08:00
|
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
|
|
|
|
All the image fixtures for the test is under tests/images.
|
|
|
|
For huggingface runner, we provide the PIL images as input.
|
2024-07-02 00:57:09 -07:00
|
|
|
For vllm runner, we provide MultiModalDataDict objects
|
|
|
|
and corresponding vision language config as input.
|
2024-06-18 10:34:33 +08:00
|
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
|
|
The text output is sanitized to be able to compare with hf.
|
|
|
|
"""
|
2024-07-03 11:34:00 +08:00
|
|
|
images = [asset.pil_image for asset in image_assets]
|
|
|
|
|
|
|
|
inputs_per_image = [(
|
|
|
|
[prompt for _ in size_factors],
|
|
|
|
[rescale_image_size(image, factor) for factor in size_factors],
|
|
|
|
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-06-30 01:06:13 -07:00
|
|
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
|
|
|
# vLLM needs a fresh new process without cuda initialization.
|
|
|
|
# if we run HF first, the cuda initialization will be done and it
|
|
|
|
# will hurt multiprocessing backend with fork method (the default method).
|
2024-06-18 10:34:33 +08:00
|
|
|
|
2024-07-03 11:34:00 +08:00
|
|
|
# max_model_len should be greater than image_feature_size
|
2024-07-03 15:14:16 -07:00
|
|
|
with vllm_runner(model,
|
2024-07-03 11:34:00 +08:00
|
|
|
max_model_len=4096,
|
2024-07-03 15:14:16 -07:00
|
|
|
max_num_seqs=1,
|
2024-06-18 10:34:33 +08:00
|
|
|
dtype=dtype,
|
2024-06-29 23:45:54 +08:00
|
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
|
|
distributed_executor_backend=distributed_executor_backend,
|
2024-07-03 15:14:16 -07:00
|
|
|
enforce_eager=True) as vllm_model:
|
2024-07-03 11:34:00 +08:00
|
|
|
vllm_outputs_per_image = [
|
|
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
|
|
max_tokens,
|
|
|
|
num_logprobs=num_logprobs,
|
|
|
|
images=vllm_images)
|
|
|
|
for prompts, vllm_images in inputs_per_image
|
2024-06-30 01:06:13 -07:00
|
|
|
]
|
|
|
|
|
|
|
|
# use eager mode for hf runner, since phi3_v didn't work with flash_attn
|
|
|
|
hf_model_kwargs = {"_attn_implementation": "eager"}
|
2024-07-03 15:14:16 -07:00
|
|
|
with hf_runner(model, dtype=dtype,
|
2024-06-30 01:06:13 -07:00
|
|
|
model_kwargs=hf_model_kwargs) as hf_model:
|
2024-07-03 11:34:00 +08:00
|
|
|
eos_token_id = hf_model.processor.tokenizer.eos_token_id
|
|
|
|
hf_outputs_per_image = [
|
|
|
|
hf_model.generate_greedy_logprobs_limit(prompts,
|
|
|
|
max_tokens,
|
|
|
|
num_logprobs=num_logprobs,
|
|
|
|
images=hf_images,
|
|
|
|
eos_token_id=eos_token_id)
|
|
|
|
for prompts, hf_images in inputs_per_image
|
|
|
|
]
|
2024-06-29 23:45:54 +08:00
|
|
|
|
2024-07-03 11:34:00 +08:00
|
|
|
for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
|
|
|
|
vllm_outputs_per_image):
|
|
|
|
check_logprobs_close(
|
|
|
|
outputs_0_lst=hf_outputs,
|
|
|
|
outputs_1_lst=[
|
2024-07-03 15:14:16 -07:00
|
|
|
vllm_to_hf_output(vllm_output, model)
|
2024-07-03 11:34:00 +08:00
|
|
|
for vllm_output in vllm_outputs
|
|
|
|
],
|
|
|
|
name_0="hf",
|
|
|
|
name_1="vllm",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Since we use _attn_implementation="eager" for hf_runner, there is more
|
|
|
|
# significant numerical difference. The basic `logprobs=5` fails to pass.
|
2024-07-03 15:14:16 -07:00
|
|
|
@pytest.mark.parametrize("model", models)
|
2024-07-03 11:34:00 +08:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"size_factors",
|
|
|
|
[
|
|
|
|
# No image
|
|
|
|
[],
|
|
|
|
# Single-scale
|
|
|
|
[1.0],
|
|
|
|
# Single-scale, batched
|
|
|
|
[1.0, 1.0, 1.0],
|
|
|
|
# Multi-scale
|
|
|
|
[0.25, 0.5, 1.0],
|
|
|
|
],
|
|
|
|
)
|
2024-06-29 23:45:54 +08:00
|
|
|
@pytest.mark.parametrize("dtype", [target_dtype])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
2024-07-03 11:34:00 +08:00
|
|
|
@pytest.mark.parametrize("num_logprobs", [10])
|
2024-07-03 15:14:16 -07:00
|
|
|
def test_models(hf_runner, vllm_runner, image_assets, model, size_factors,
|
|
|
|
dtype: str, max_tokens: int, num_logprobs: int) -> None:
|
2024-06-29 23:45:54 +08:00
|
|
|
run_test(
|
|
|
|
hf_runner,
|
|
|
|
vllm_runner,
|
|
|
|
image_assets,
|
2024-07-03 15:14:16 -07:00
|
|
|
model,
|
2024-07-03 11:34:00 +08:00
|
|
|
size_factors=size_factors,
|
2024-06-29 23:45:54 +08:00
|
|
|
dtype=dtype,
|
|
|
|
max_tokens=max_tokens,
|
2024-07-03 11:34:00 +08:00
|
|
|
num_logprobs=num_logprobs,
|
2024-06-29 23:45:54 +08:00
|
|
|
tensor_parallel_size=1,
|
|
|
|
)
|