174 lines
4.5 KiB
Python
174 lines
4.5 KiB
Python
![]() |
"""
|
||
|
This example shows how to use vLLM for running offline inference
|
||
|
with the correct prompt format on vision language models.
|
||
|
|
||
|
For most models, the prompt format should follow corresponding examples
|
||
|
on HuggingFace model repository.
|
||
|
"""
|
||
|
from transformers import AutoTokenizer
|
||
|
|
||
|
from vllm import LLM, SamplingParams
|
||
|
from vllm.assets.image import ImageAsset
|
||
|
from vllm.utils import FlexibleArgumentParser
|
||
|
|
||
|
# Input image and question
|
||
|
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
||
|
question = "What is the content of this image?"
|
||
|
|
||
|
|
||
|
# LLaVA-1.5
|
||
|
def run_llava(question):
|
||
|
|
||
|
prompt = f"USER: <image>\n{question}\nASSISTANT:"
|
||
|
|
||
|
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||
|
|
||
|
return llm, prompt
|
||
|
|
||
|
|
||
|
# LLaVA-1.6/LLaVA-NeXT
|
||
|
def run_llava_next(question):
|
||
|
|
||
|
prompt = f"[INST] <image>\n{question} [/INST]"
|
||
|
llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf")
|
||
|
|
||
|
return llm, prompt
|
||
|
|
||
|
|
||
|
# Fuyu
|
||
|
def run_fuyu(question):
|
||
|
|
||
|
prompt = f"{question}\n"
|
||
|
llm = LLM(model="adept/fuyu-8b")
|
||
|
|
||
|
return llm, prompt
|
||
|
|
||
|
|
||
|
# Phi-3-Vision
|
||
|
def run_phi3v(question):
|
||
|
|
||
|
prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" # noqa: E501
|
||
|
# Note: The default setting of max_num_seqs (256) and
|
||
|
# max_model_len (128k) for this model may cause OOM.
|
||
|
# You may lower either to run this example on lower-end GPUs.
|
||
|
|
||
|
# In this example, we override max_num_seqs to 5 while
|
||
|
# keeping the original context length of 128k.
|
||
|
llm = LLM(
|
||
|
model="microsoft/Phi-3-vision-128k-instruct",
|
||
|
trust_remote_code=True,
|
||
|
max_num_seqs=5,
|
||
|
)
|
||
|
return llm, prompt
|
||
|
|
||
|
|
||
|
# PaliGemma
|
||
|
def run_paligemma(question):
|
||
|
|
||
|
prompt = question
|
||
|
llm = LLM(model="google/paligemma-3b-mix-224")
|
||
|
|
||
|
return llm, prompt
|
||
|
|
||
|
|
||
|
# Chameleon
|
||
|
def run_chameleon(question):
|
||
|
|
||
|
prompt = f"{question}<image>"
|
||
|
llm = LLM(model="facebook/chameleon-7b")
|
||
|
return llm, prompt
|
||
|
|
||
|
|
||
|
# MiniCPM-V
|
||
|
def run_minicpmv(question):
|
||
|
|
||
|
# 2.0
|
||
|
# The official repo doesn't work yet, so we need to use a fork for now
|
||
|
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 # noqa
|
||
|
# model_name = "HwwwH/MiniCPM-V-2"
|
||
|
|
||
|
# 2.5
|
||
|
model_name = "openbmb/MiniCPM-Llama3-V-2_5"
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||
|
trust_remote_code=True)
|
||
|
llm = LLM(
|
||
|
model=model_name,
|
||
|
trust_remote_code=True,
|
||
|
)
|
||
|
|
||
|
messages = [{
|
||
|
'role': 'user',
|
||
|
'content': f'(<image>./</image>)\n{question}'
|
||
|
}]
|
||
|
prompt = tokenizer.apply_chat_template(messages,
|
||
|
tokenize=False,
|
||
|
add_generation_prompt=True)
|
||
|
return llm, prompt
|
||
|
|
||
|
|
||
|
model_example_map = {
|
||
|
"llava": run_llava,
|
||
|
"llava-next": run_llava_next,
|
||
|
"fuyu": run_fuyu,
|
||
|
"phi3_v": run_phi3v,
|
||
|
"paligemma": run_paligemma,
|
||
|
"chameleon": run_chameleon,
|
||
|
"minicpmv": run_minicpmv,
|
||
|
}
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
model = args.model_type
|
||
|
if model not in model_example_map:
|
||
|
raise ValueError(f"Model type {model} is not supported.")
|
||
|
|
||
|
llm, prompt = model_example_map[model](question)
|
||
|
|
||
|
# We set temperature to 0.2 so that outputs can be different
|
||
|
# even when all prompts are identical when running batch inference.
|
||
|
sampling_params = SamplingParams(temperature=0.2, max_tokens=64)
|
||
|
|
||
|
assert args.num_prompts > 0
|
||
|
if args.num_prompts == 1:
|
||
|
# Single inference
|
||
|
inputs = {
|
||
|
"prompt": prompt,
|
||
|
"multi_modal_data": {
|
||
|
"image": image
|
||
|
},
|
||
|
}
|
||
|
|
||
|
else:
|
||
|
# Batch inference
|
||
|
inputs = [{
|
||
|
"prompt": prompt,
|
||
|
"multi_modal_data": {
|
||
|
"image": image
|
||
|
},
|
||
|
} for _ in range(args.num_prompts)]
|
||
|
|
||
|
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
||
|
|
||
|
for o in outputs:
|
||
|
generated_text = o.outputs[0].text
|
||
|
print(generated_text)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = FlexibleArgumentParser(
|
||
|
description='Demo on using vLLM for offline inference with '
|
||
|
'vision language models')
|
||
|
parser.add_argument('--model-type',
|
||
|
'-m',
|
||
|
type=str,
|
||
|
default="llava",
|
||
|
choices=model_example_map.keys(),
|
||
|
help='Huggingface "model_type".')
|
||
|
parser.add_argument('--num-prompts',
|
||
|
type=int,
|
||
|
default=1,
|
||
|
help='Number of prompts to run.')
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
main(args)
|