146 lines
5.7 KiB
ReStructuredText
Raw Normal View History

2024-06-03 13:56:41 +08:00
.. _vlm:
Using VLMs
==========
vLLM provides experimental support for Vision Language Models (VLMs). See the :ref:`list of supported VLMs here <supported_vlms>`.
This document shows you how to run and serve these models using vLLM.
2024-06-03 13:56:41 +08:00
.. important::
We are actively iterating on VLM support. Expect breaking changes to VLM usage and development in upcoming releases without prior deprecation.
Currently, the support for vision language models on vLLM has the following limitations:
* Only single image input is supported per text prompt.
We are continuously improving user & developer experience for VLMs. Please `open an issue on GitHub <https://github.com/vllm-project/vllm/issues/new/choose>`_ if you have any feedback or feature requests.
2024-06-03 13:56:41 +08:00
Offline Batched Inference
-------------------------
To initialize a VLM, the aforementioned arguments must be passed to the ``LLM`` class for instantiating the engine.
.. code-block:: python
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
2024-06-03 13:56:41 +08:00
.. important::
We have removed all vision language related CLI args in the ``0.5.1`` release. **This is a breaking change**, so please update your code to follow
the above snippet. Specifically, ``image_feature_size`` is no longer required to be specified as we now calculate that
internally for each model.
To pass an image to the model, note the following in :class:`vllm.inputs.PromptInputs`:
2024-06-03 13:56:41 +08:00
* ``prompt``: The prompt should follow the format that is documented on HuggingFace.
* ``multi_modal_data``: This is a dictionary that follows the schema defined in :class:`vllm.multimodal.MultiModalDataDict`.
2024-06-03 13:56:41 +08:00
.. code-block:: python
# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
2024-06-03 13:56:41 +08:00
# Load the image using PIL.Image
image = PIL.Image.open(...)
# Single prompt inference
2024-06-03 13:56:41 +08:00
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {"image": image},
2024-06-03 13:56:41 +08:00
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
# Batch inference
image_1 = PIL.Image.open(...)
image_2 = PIL.Image.open(...)
outputs = llm.generate(
[
{
"prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
"multi_modal_data": {"image": image_1},
},
{
"prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
"multi_modal_data": {"image": image_2},
}
]
)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
2024-06-03 13:56:41 +08:00
A code example can be found in `examples/offline_inference_vision_language.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language.py>`_.
Online OpenAI Vision API Compatible Inference
----------------------------------------------
You can serve vision language models with vLLM's HTTP server that is compatible with `OpenAI Vision API <https://platform.openai.com/docs/guides/vision>`_.
.. note::
Currently, vLLM supports only **single** ``image_url`` input per ``messages``. Support for multi-image inputs will be
added in the future.
Below is an example on how to launch the same ``llava-hf/llava-1.5-7b-hf`` with vLLM API server.
.. important::
Since OpenAI Vision API is based on `Chat <https://platform.openai.com/docs/api-reference/chat>`_ API, a chat template
is **required** to launch the API server if the model's tokenizer does not come with one. In this example, we use the
HuggingFace Llava chat template that you can find in the example folder `here <https://github.com/vllm-project/vllm/blob/main/examples/template_llava.jinja>`_.
.. code-block:: bash
vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja
.. important::
We have removed all vision language related CLI args in the ``0.5.1`` release. **This is a breaking change**, so please update your code to follow
the above snippet. Specifically, ``image_feature_size`` is no longer required to be specified as we now calculate that
internally for each model.
To consume the server, you can use the OpenAI client like in the example below:
.. code-block:: python
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="llava-hf/llava-1.5-7b-hf",
messages=[{
"role": "user",
"content": [
# NOTE: The prompt formatting with the image token `<image>` is not needed
# since the prompt will be processed automatically by the API server.
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
},
],
}],
)
print("Chat response:", chat_response)
A full code example can be found in `examples/openai_vision_api_client.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_vision_api_client.py>`_.
.. note::
By default, the timeout for fetching images through http url is ``5`` seconds. You can override this by setting the environment variable:
.. code-block:: shell
export VLLM_IMAGE_FETCH_TIMEOUT=<timeout>
.. note::
There is no need to format the prompt in the API request since it will be handled by the server.