609 lines
26 KiB
Python
Raw Normal View History

"""A layer that samples the next tokens from the model's outputs."""
from typing import Dict, List, Optional, Tuple
2023-02-23 09:26:09 +00:00
import torch
import torch.nn as nn
from vllm.model_executor.sampling_metadata import (SamplingMetadata,
SamplingTensors)
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import (Logprob, PromptLogprobs, SampleLogprobs,
SamplerOutput, SequenceData, SequenceGroupOutput,
SequenceOutput)
from vllm.model_executor.layers.ops.sample import (sample as sample_triton)
2023-02-23 09:26:09 +00:00
2023-02-23 09:26:09 +00:00
class Sampler(nn.Module):
"""Samples the next tokens from the model's outputs.
This layer does the following:
1. Discard the hidden states that are not used for sampling (i.e., all
tokens except the final one in each prompt).
2. Compute the logits for the next tokens.
3. Apply presence, frequency and repetition penalties.
4. Apply temperature scaling.
5. Apply top-p and top-k truncation.
6. Sample the next tokens.
Here, each sequence group within the batch can have different sampling
parameters (e.g., sampling method, temperature, top-p, top-k, etc.).
"""
2023-02-23 09:26:09 +00:00
def forward(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
assert logits is not None
2023-12-17 07:03:49 -08:00
_, vocab_size = logits.shape
2023-12-20 00:04:33 -08:00
# Prepare sampling tensors with pinned memory to avoid blocking.
(sampling_tensors, do_penalties, do_top_p_top_k,
do_min_p) = SamplingTensors.from_sampling_metadata(
sampling_metadata, vocab_size, logits.device, logits.dtype)
2023-12-17 07:03:49 -08:00
# Apply presence and frequency penalties.
2023-12-17 07:03:49 -08:00
if do_penalties:
logits = _apply_penalties(logits, sampling_tensors.prompt_tokens,
sampling_tensors.output_tokens,
sampling_tensors.presence_penalties,
sampling_tensors.frequency_penalties,
sampling_tensors.repetition_penalties)
# Apply temperature scaling.
2023-12-17 07:03:49 -08:00
# Use in-place division to avoid creating a new tensor.
logits.div_(sampling_tensors.temperatures.unsqueeze_(dim=1))
if do_top_p_top_k:
logits = _apply_top_k_top_p(logits, sampling_tensors.top_ps,
2023-12-17 07:03:49 -08:00
sampling_tensors.top_ks)
2023-11-18 08:20:49 +08:00
if do_min_p:
2023-12-17 07:03:49 -08:00
logits = _apply_min_p(logits, sampling_tensors.min_ps)
2023-11-18 08:20:49 +08:00
# We use float32 for probabilities and log probabilities.
# Compute the probabilities.
probs = torch.softmax(logits, dim=-1, dtype=torch.float)
# Compute the log probabilities.
# Use log_softmax to ensure numerical stability.
logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float)
2023-02-23 09:26:09 +00:00
# Sample the next tokens.
sample_results = _sample(probs, logprobs, sampling_metadata,
sampling_tensors)
# Get the logprobs query results.
prompt_logprobs, sample_logprobs = _get_logprobs(
logprobs, sampling_metadata, sample_results)
return _build_sampler_output(sample_results, sampling_metadata,
prompt_logprobs, sample_logprobs)
def _get_bin_counts_and_mask(
2023-12-17 07:03:49 -08:00
tokens: torch.Tensor,
vocab_size: int,
num_seqs: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Compute the bin counts for the tokens.
# vocab_size + 1 for padding.
bin_counts = torch.zeros((num_seqs, vocab_size + 1),
dtype=torch.long,
2023-12-17 07:03:49 -08:00
device=tokens.device)
bin_counts.scatter_add_(1, tokens, torch.ones_like(tokens))
bin_counts = bin_counts[:, :vocab_size]
mask = bin_counts > 0
return bin_counts, mask
2023-12-17 07:03:49 -08:00
def _apply_penalties(logits: torch.Tensor, prompt_tokens_tensor: torch.Tensor,
output_tokens_tensor: torch.Tensor,
presence_penalties: torch.Tensor,
frequency_penalties: torch.Tensor,
repetition_penalties: torch.Tensor) -> torch.Tensor:
num_seqs, vocab_size = logits.shape
2023-12-17 07:03:49 -08:00
_, prompt_mask = _get_bin_counts_and_mask(prompt_tokens_tensor, vocab_size,
num_seqs)
output_bin_counts, output_mask = _get_bin_counts_and_mask(
2023-12-17 07:03:49 -08:00
output_tokens_tensor, vocab_size, num_seqs)
2023-10-30 01:02:41 +08:00
repetition_penalties = repetition_penalties[:, None].repeat(1, vocab_size)
repetition_penalties[~(prompt_mask | output_mask)] = 1.0
2023-10-30 01:02:41 +08:00
logits = torch.where(logits > 0, logits / repetition_penalties,
logits * repetition_penalties)
# We follow the definition in OpenAI API.
# Refer to https://platform.openai.com/docs/api-reference/parameter-details
2023-12-17 07:03:49 -08:00
logits -= frequency_penalties.unsqueeze_(dim=1) * output_bin_counts
logits -= presence_penalties.unsqueeze_(dim=1) * output_mask
return logits
def _apply_top_k_top_p(
logits: torch.Tensor,
2023-12-17 07:03:49 -08:00
p: torch.Tensor,
k: torch.Tensor,
) -> torch.Tensor:
logits_sort, logits_idx = logits.sort(dim=-1, descending=False)
# Apply top-k.
top_k_mask = logits_sort.size(1) - k.to(torch.long)
# Get all the top_k values.
top_k_mask = logits_sort.gather(1, top_k_mask.unsqueeze(dim=1))
top_k_mask = logits_sort < top_k_mask
logits_sort.masked_fill_(top_k_mask, -float("inf"))
2023-05-10 12:51:36 -07:00
# Apply top-p.
probs_sort = logits_sort.softmax(dim=-1)
probs_sum = probs_sort.cumsum(dim=-1)
top_p_mask = probs_sum <= 1 - p.unsqueeze(dim=1)
# at least one
top_p_mask[:, -1] = False
logits_sort.masked_fill_(top_p_mask, -float("inf"))
2023-05-10 12:51:36 -07:00
# Re-sort the probabilities.
2023-12-17 07:03:49 -08:00
src = torch.arange(logits_idx.shape[-1],
device=logits_idx.device).expand_as(logits_idx)
logits_idx_inv = torch.empty_like(logits_idx).scatter_(dim=-1,
index=logits_idx,
src=src)
logits = torch.gather(logits_sort, dim=-1, index=logits_idx_inv)
return logits
2023-11-18 08:20:49 +08:00
def _apply_min_p(
logits: torch.Tensor,
2023-12-17 07:03:49 -08:00
min_p: torch.Tensor,
2023-11-18 08:20:49 +08:00
) -> torch.Tensor:
"""
Adapted from
https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17
"""
probs = torch.softmax(logits, dim=-1)
top_probs, _ = probs.max(dim=-1, keepdim=True)
2023-12-17 07:03:49 -08:00
scaled_min_p = min_p.unsqueeze_(dim=1) * top_probs
2023-11-18 08:20:49 +08:00
tokens_to_remove = probs < scaled_min_p
2023-12-17 07:03:49 -08:00
logits = logits.masked_fill_(tokens_to_remove, -float("inf"))
2023-11-18 08:20:49 +08:00
return logits
def _greedy_sample(
selected_seq_groups: List[Tuple[List[int], SamplingParams]],
2023-12-17 07:03:49 -08:00
samples: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
2023-12-17 07:03:49 -08:00
samples = samples.tolist()
sample_idx = 0
results = []
for seq_group in selected_seq_groups:
seq_ids, _ = seq_group
num_parent_seqs = len(seq_ids)
assert num_parent_seqs == 1, (
"Greedy sampling should have only one seq.")
parent_ids = list(range(num_parent_seqs))
2023-12-17 07:03:49 -08:00
next_token_ids = [samples[sample_idx]]
results.append((next_token_ids, parent_ids))
sample_idx += num_parent_seqs
return results
def _random_sample(
selected_seq_groups: List[Tuple[List[int], SamplingParams]],
is_prompts: List[bool],
2023-12-17 07:03:49 -08:00
random_samples: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
# Find the maximum best_of value of the prompt phase requests.
2023-12-17 07:03:49 -08:00
random_samples = random_samples.cpu()
sample_idx = 0
results = []
for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
seq_ids, sampling_params = seq_group
num_parent_seqs = len(seq_ids)
if is_prompt:
# Prompt phase.
parent_ids = [0] * sampling_params.best_of
next_token_ids = random_samples[
sample_idx, :sampling_params.best_of].tolist()
else:
# Generation phase.
parent_ids = list(range(num_parent_seqs))
next_token_ids = random_samples[sample_idx:sample_idx +
num_parent_seqs, 0].tolist()
results.append((next_token_ids, parent_ids))
sample_idx += num_parent_seqs
return results
def _beam_search_sample(
selected_seq_groups: List[Tuple[List[int], SamplingParams]],
is_prompts: List[bool],
seq_data: Dict[int, SequenceData],
logprobs: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
# We sample 2 * beam_width candidates to make sure that with high
# probability we can get `beam_width` candidates in addition to
# the finished sequences for the next iteration. See
# https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L557-L563
# for details. See also HF reference:
# https://github.com/huggingface/transformers/blob/a4dd53d88e4852f023332d284ff07a01afcd5681/src/transformers/generation/utils.py#L3063-L3065
#
# NOTE: Beam search is not vectorized, so its speed can be slower than
# other sampling methods.
sample_idx = 0
results = []
for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
seq_ids, sampling_params = seq_group
num_parent_seqs = len(seq_ids)
beam_width = sampling_params.best_of
seq_group_logprobs = logprobs[sample_idx:sample_idx + num_parent_seqs]
if is_prompt:
# Prompt phase.
assert num_parent_seqs == 1, (
"Prompt input should have only one seq.")
parent_ids = [0] * (2 * beam_width)
_, next_token_ids = torch.topk(seq_group_logprobs[0],
2 * beam_width)
next_token_ids = next_token_ids.tolist()
else:
# Generation phase.
cumulative_logprobs = [
seq_data[seq_id].cumulative_logprob for seq_id in seq_ids
]
cumulative_logprobs = torch.tensor(
cumulative_logprobs,
dtype=torch.float,
device=seq_group_logprobs.device)
seq_group_logprobs = (seq_group_logprobs +
cumulative_logprobs.unsqueeze(dim=1))
_, topk_ids = torch.topk(seq_group_logprobs.flatten(),
2 * beam_width)
topk_ids = topk_ids.tolist()
vocab_size = seq_group_logprobs.size(-1)
parent_ids = [i // vocab_size for i in topk_ids]
next_token_ids = [i % vocab_size for i in topk_ids]
results.append((next_token_ids, parent_ids))
sample_idx += num_parent_seqs
assert sample_idx == logprobs.size(0)
return results
2023-12-17 07:03:49 -08:00
# torch.multinomial forces a GPU<->CPU sync.
# Therefore, we use an optimized implementation instead.
# Note that we always sample with replacement.
# probs will be modified in place, but this is fine, as we pass
# in a copy already.
def _multinomial(
probs: torch.Tensor,
num_samples: int,
2024-02-21 11:47:00 -08:00
seq_groups: Optional[List[Tuple[List[int], SamplingParams]]] = None,
generators: Optional[List[torch.Generator]] = None,
) -> torch.Tensor:
2023-12-17 07:03:49 -08:00
if num_samples > 1:
# This is equivalent to torch.repeat_interleaved (which also
# forces a GPU<->CPU sync).
# This allows us to do sampling with replacement by creating
# num_samples copies of each row in the tensor, and then
# batch sampling the resulting tensor.
probs = probs[:, None, :].expand(probs.shape[0], num_samples,
probs.shape[1]).contiguous().view(
-1, probs.shape[1])
2024-02-21 11:47:00 -08:00
q = torch.empty_like(probs)
if seq_groups is None:
q.exponential_()
else:
sample_idx = 0
for (seq_ids, _), generator in zip(seq_groups, generators):
next_sample_idx = sample_idx + len(seq_ids) * num_samples
q[sample_idx:next_sample_idx].exponential_(generator=generator)
sample_idx = next_sample_idx
2023-12-17 07:03:49 -08:00
return probs.div_(q).argmax(dim=1).view(-1, num_samples)
def _sample_with_torch(
probs: torch.Tensor,
logprobs: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> List[Tuple[List[int], List[int]]]:
categorized_seq_group_ids = {t: [] for t in SamplingType}
categorized_sample_indices = sampling_metadata.categorized_sample_indices
for i, seq_group in enumerate(sampling_metadata.seq_groups):
_, sampling_params = seq_group
sampling_type = sampling_params.sampling_type
categorized_seq_group_ids[sampling_type].append(i)
sample_results_dict: Dict[int, Tuple[List[int], List[int]]] = {}
2023-12-17 07:03:49 -08:00
sample_metadata = {}
2024-02-21 11:47:00 -08:00
multinomial_samples = {}
2023-12-17 07:03:49 -08:00
# Counterintiutively, having two loops here is actually faster.
# The first loop can run without waiting on GPU<->CPU sync.
for sampling_type in SamplingType:
sample_indices = categorized_sample_indices[sampling_type][:, 0]
num_tokens = len(sample_indices)
if num_tokens == 0:
continue
2023-12-17 07:03:49 -08:00
seq_group_ids = categorized_seq_group_ids[sampling_type]
seq_groups = [sampling_metadata.seq_groups[i] for i in seq_group_ids]
is_prompts = [i < sampling_metadata.num_prompts for i in seq_group_ids]
sample_metadata[sampling_type] = (seq_group_ids, seq_groups,
is_prompts, sample_indices)
if sampling_type == SamplingType.GREEDY:
greedy_samples = torch.argmax(logprobs[sample_indices.long()],
dim=-1)
2024-02-21 11:47:00 -08:00
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
max_best_of_in_batch = 1
2023-12-17 07:03:49 -08:00
for seq_group, is_prompt in zip(seq_groups, is_prompts):
if is_prompt:
_, sampling_params = seq_group
max_best_of_in_batch = max(max_best_of_in_batch,
sampling_params.best_of)
2024-02-21 11:47:00 -08:00
seeded_args = {} if sampling_type == SamplingType.RANDOM else {
"seq_groups": seq_groups,
"generators": sampling_metadata.generators,
}
multinomial_samples[sampling_type] = _multinomial(
probs[sample_indices.long()], max_best_of_in_batch,
**seeded_args)
2023-12-17 07:03:49 -08:00
elif sampling_type == SamplingType.BEAM:
beam_search_logprobs = logprobs[sample_indices]
else:
raise ValueError(f"Unsupported sampling type: {sampling_type}")
# GPU<->CPU sync happens in the loop below.
for sampling_type in SamplingType:
if sampling_type not in sample_metadata:
continue
seq_group_ids, seq_groups, is_prompts, sample_indices = sample_metadata[
sampling_type]
if sampling_type == SamplingType.GREEDY:
sample_results = _greedy_sample(seq_groups, greedy_samples)
2024-02-21 11:47:00 -08:00
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
sample_results = _random_sample(seq_groups, is_prompts,
2024-02-21 11:47:00 -08:00
multinomial_samples[sampling_type])
elif sampling_type == SamplingType.BEAM:
sample_results = _beam_search_sample(seq_groups, is_prompts,
sampling_metadata.seq_data,
2023-12-17 07:03:49 -08:00
beam_search_logprobs)
sample_results_dict.update(zip(seq_group_ids, sample_results))
sample_results = [
sample_results_dict[i]
for i in range(len(sampling_metadata.seq_groups))
]
return sample_results
def _sample_with_triton_kernel(
probs: torch.Tensor,
logprobs: torch.Tensor,
sampling_metadata: SamplingMetadata,
sampling_tensors: SamplingTensors,
) -> List[Tuple[List[int], List[int]]]:
categorized_seq_group_ids = {t: [] for t in SamplingType}
categorized_sample_indices = sampling_metadata.categorized_sample_indices
for i, seq_group in enumerate(sampling_metadata.seq_groups):
_, sampling_params = seq_group
sampling_type = sampling_params.sampling_type
categorized_seq_group_ids[sampling_type].append(i)
sample_results_dict: Dict[int, Tuple[List[int], List[int]]] = {}
sample_metadata = {}
max_best_of_in_batch = 1
# Counterintiutively, having two loops here is actually faster.
# The first loop can run without waiting on GPU<->CPU sync.
for sampling_type in SamplingType:
sample_indices = categorized_sample_indices[sampling_type][:, 0]
sampled_token_indices = categorized_sample_indices[sampling_type][:, 1]
num_tokens = len(sample_indices)
if num_tokens == 0:
continue
seq_group_ids = categorized_seq_group_ids[sampling_type]
seq_groups = [sampling_metadata.seq_groups[i] for i in seq_group_ids]
is_prompts = [i < sampling_metadata.num_prompts for i in seq_group_ids]
sample_metadata[sampling_type] = (seq_group_ids, seq_groups,
is_prompts, sample_indices,
sampled_token_indices)
if sampling_type in (SamplingType.GREEDY, SamplingType.RANDOM,
SamplingType.RANDOM_SEED):
for seq_group, is_prompt in zip(seq_groups, is_prompts):
if is_prompt:
_, sampling_params = seq_group
max_best_of_in_batch = max(max_best_of_in_batch,
sampling_params.best_of)
elif sampling_type == SamplingType.BEAM:
beam_search_logprobs = logprobs[sample_indices]
else:
raise ValueError(f"Unsupported sampling type: {sampling_type}")
sampled_tokens, _, _ = sample_triton(
probs=probs,
seeds=sampling_tensors.sampling_seeds,
max_best_of=max_best_of_in_batch,
sample_indices=sampling_tensors.sample_indices,
logprobs=logprobs,
# don't save logprobs because we have logic for that below
# TODO: use this instead of the CPU-based logic below
save_logprobs=False,
)
# GPU<->CPU sync happens in the loop below.
for sampling_type in SamplingType:
if sampling_type not in sample_metadata:
continue
(seq_group_ids, seq_groups, is_prompts, sample_indices,
sampled_token_indices) = sample_metadata[sampling_type]
if sampling_type == SamplingType.GREEDY:
sample_results = _greedy_sample(
seq_groups, sampled_tokens[sampled_token_indices][:, 0])
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
sample_results = _random_sample(
seq_groups, is_prompts, sampled_tokens[sampled_token_indices])
elif sampling_type == SamplingType.BEAM:
sample_results = _beam_search_sample(seq_groups, is_prompts,
sampling_metadata.seq_data,
beam_search_logprobs)
sample_results_dict.update(zip(seq_group_ids, sample_results))
sample_results = [
sample_results_dict[i]
for i in range(len(sampling_metadata.seq_groups))
]
return sample_results
def _sample(
probs: torch.Tensor,
logprobs: torch.Tensor,
sampling_metadata: SamplingMetadata,
sampling_tensors: SamplingTensors,
) -> List[Tuple[List[int], List[int]]]:
return _sample_with_torch(probs, logprobs, sampling_metadata)
# TODO: Enable once Triton kernel & associated code is faster.
# return _sample_with_triton_kernel(probs, logprobs, sampling_metadata,
# sampling_tensors)
def _get_logprobs(
logprobs: torch.Tensor,
sampling_metadata: SamplingMetadata,
sample_results: List[Tuple[List[int], List[int]]],
) -> Tuple[List[Optional[List[Optional[Dict[int, float]]]]], List[List[Dict[
int, float]]]]:
# Prepare query indices
batched_logprobs_query_seq_indices: List[int] = []
batched_logprobs_query_token_indices: List[int] = []
largest_num_logprobs = 0
sample_idx = 0
for i, (seq_group, sample_result) in enumerate(
zip(sampling_metadata.seq_groups, sample_results)):
seq_ids, sampling_params = seq_group
next_token_ids, parent_ids = sample_result
num_parent_seqs = len(seq_ids)
if (i < sampling_metadata.num_prompts
and sampling_params.prompt_logprobs is not None):
largest_num_logprobs = max(largest_num_logprobs,
sampling_params.prompt_logprobs)
prompt_len = sampling_metadata.prompt_lens[i]
prompt_tokens = sampling_metadata.seq_data[
seq_ids[0]].prompt_token_ids
batched_logprobs_query_seq_indices.extend(
sample_idx + j for j in range(prompt_len - 1))
batched_logprobs_query_token_indices.extend(
token_id for token_id in prompt_tokens[1:])
sample_idx += prompt_len - 1
batched_logprobs_query_seq_indices.extend(
[sample_idx + parent_id for parent_id in parent_ids])
batched_logprobs_query_token_indices.extend(next_token_ids)
if sampling_params.logprobs is not None:
largest_num_logprobs = max(largest_num_logprobs,
sampling_params.logprobs)
sample_idx += num_parent_seqs
assert sample_idx == logprobs.size(0)
# Batched query for logprobs of selected token
batched_logprobs_query_result = logprobs[[
batched_logprobs_query_seq_indices,
batched_logprobs_query_token_indices
2023-12-17 07:03:49 -08:00
]]
# Batched query for logprobs of topk tokens
if largest_num_logprobs > 0:
top_logprobs, top_token_ids = torch.topk(logprobs,
largest_num_logprobs,
dim=-1)
top_logprobs = top_logprobs.cpu()
top_token_ids = top_token_ids.cpu()
else:
top_logprobs, top_token_ids = None, None
2023-12-17 07:03:49 -08:00
batched_logprobs_query_result = batched_logprobs_query_result.cpu()
# Gather results
result_prompt_logprobs: List[Optional[PromptLogprobs]] = []
result_sample_logprobs: List[SampleLogprobs] = []
sample_idx = 0
query_result_idx = 0
for i, (seq_group, sample_result) in enumerate(
zip(sampling_metadata.seq_groups, sample_results)):
seq_ids, sampling_params = seq_group
next_token_ids, parent_ids = sample_result
# Prompt logprobs
if (i < sampling_metadata.num_prompts
and sampling_params.prompt_logprobs is not None):
num_logprobs = sampling_params.prompt_logprobs
prompt_tokens = sampling_metadata.seq_data[
seq_ids[0]].prompt_token_ids
group_prompt_logprobs: PromptLogprobs = [None]
for token_id in prompt_tokens[1:]:
prompt_logprobs_dict = {
token_id:
batched_logprobs_query_result[query_result_idx].item()
}
if num_logprobs > 0:
prompt_logprobs_dict.update(
zip(top_token_ids[sample_idx, :num_logprobs].tolist(),
top_logprobs[sample_idx, :num_logprobs].tolist()))
group_prompt_logprobs.append({
token_id: Logprob(logprob)
for token_id, logprob in prompt_logprobs_dict.items()
})
sample_idx += 1
query_result_idx += 1
result_prompt_logprobs.append(group_prompt_logprobs)
else:
result_prompt_logprobs.append(None)
# Sample logprobs
num_logprobs = sampling_params.logprobs
if num_logprobs is None:
num_logprobs = 0
group_sample_logprobs: SampleLogprobs = []
for next_token_id, parent_id in zip(next_token_ids, parent_ids):
sample_logprobs_dict = {
next_token_id:
batched_logprobs_query_result[query_result_idx].item()
}
query_result_idx += 1
if num_logprobs > 0:
sample_logprobs_dict.update(
zip(
top_token_ids[sample_idx +
parent_id, :num_logprobs].tolist(),
top_logprobs[sample_idx +
parent_id, :num_logprobs].tolist()))
group_sample_logprobs.append({
token_id: Logprob(logprob)
for token_id, logprob in sample_logprobs_dict.items()
})
result_sample_logprobs.append(group_sample_logprobs)
sample_idx += len(seq_ids)
return result_prompt_logprobs, result_sample_logprobs
def _build_sampler_output(
sample_results: List[Tuple[List[int], List[int]]],
sampling_metadata: SamplingMetadata,
prompt_logprobs: List[Optional[PromptLogprobs]],
sample_logprobs: List[SampleLogprobs],
) -> SamplerOutput:
sampler_output = []
for (seq_group, sample_result, group_prompt_logprobs,
group_sample_logprobs) in zip(sampling_metadata.seq_groups,
sample_results, prompt_logprobs,
sample_logprobs):
seq_ids, _ = seq_group
next_token_ids, parent_ids = sample_result
seq_outputs = []
for parent_id, next_token_id, logprobs in zip(parent_ids,
next_token_ids,
group_sample_logprobs):
seq_outputs.append(
2023-11-28 14:08:01 -08:00
SequenceOutput(seq_ids[parent_id], next_token_id, logprobs))
sampler_output.append(
2023-11-28 14:08:01 -08:00
SequenceGroupOutput(seq_outputs, group_prompt_logprobs))
return SamplerOutput(outputs=sampler_output)