vllm/cacheflow/models/model_utils.py

45 lines
1.2 KiB
Python
Raw Normal View History

2023-02-23 21:31:39 +00:00
from typing import Union
import torch
2023-02-13 09:36:12 +00:00
import torch.nn as nn
from cacheflow.models.memory_analyzer import CacheFlowMemoryAnalyzer
from cacheflow.models.memory_analyzer import OPTMemoryAnalyzer
2023-02-22 18:08:25 +00:00
from cacheflow.models.opt import OPTForCausalLM
from cacheflow.models.utils import get_torch_dtype
2023-02-13 09:36:12 +00:00
_MODELS = {
2023-02-13 09:36:12 +00:00
'opt': OPTForCausalLM,
}
_MEMORY_ANALYZERS = {
'opt': OPTMemoryAnalyzer,
2023-02-23 21:31:39 +00:00
}
2023-02-13 09:36:12 +00:00
2023-02-23 21:31:39 +00:00
def get_model(
model_name: str,
dtype: Union[torch.dtype, str],
) -> nn.Module:
torch_dtype = get_torch_dtype(dtype)
for model_class, hf_model in _MODELS.items():
2023-02-13 22:51:03 +00:00
if model_class in model_name:
model = hf_model.from_pretrained(
model_name, torch_dtype=torch_dtype)
2023-02-24 16:29:36 -08:00
return model.eval()
raise ValueError(f'Unsupported model name: {model_name}')
def get_memory_analyzer(
model_name: str,
block_size: int,
dtype: Union[torch.dtype, str],
) -> CacheFlowMemoryAnalyzer:
torch_dtype = get_torch_dtype(dtype)
for model_class, memory_analyzer in _MEMORY_ANALYZERS.items():
if model_class in model_name:
return memory_analyzer(
model_name, block_size, torch_dtype)
raise ValueError(f'Unsupported model name: {model_name}')