vllm/.buildkite/test-pipeline.yaml

184 lines
6.7 KiB
YAML
Raw Normal View History

2024-01-14 12:37:58 -08:00
# In this file, you can add more tests to run either by adding a new step or
# adding a new command to an existing step. See different options here for examples.
# This script will be feed into Jinja template in `test-template-aws.j2` to generate
2024-01-14 12:37:58 -08:00
# the final pipeline yaml file.
steps:
- label: Regression Test
mirror_hardwares: [amd]
2024-01-14 12:37:58 -08:00
command: pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: AsyncEngine Test
#mirror_hardwares: [amd]
2024-01-14 12:37:58 -08:00
command: pytest -v -s async_engine
- label: Basic Correctness Test
mirror_hardwares: [amd]
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test
mirror_hardwares: [amd]
command: pytest -v -s core
- label: Distributed Comm Ops Test
#mirror_hardwares: [amd]
command: pytest -v -s distributed/test_comm_ops.py
working_dir: "/vllm-workspace/tests"
num_gpus: 2
- label: Distributed Tests (2 GPUs)
mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
2024-03-27 00:33:26 -07:00
commands:
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py
- pytest -v -s spec_decode/e2e/test_integration_dist.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py
2024-01-14 12:37:58 -08:00
- label: Distributed Tests (4 GPUs)
#mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
commands:
- pytest -v -s distributed/test_pynccl.py
# We want to test that models which use 2 GPUs work with 4 GPUs, which is why we duplicate them here.
# See https://github.com/vllm-project/vllm/pull/5473#issuecomment-2166601837 for context.
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
2024-01-14 12:37:58 -08:00
- label: Engine Test
mirror_hardwares: [amd]
command: pytest -v -s engine tokenization test_sequence.py test_config.py test_logger.py
2024-01-14 12:37:58 -08:00
2024-01-17 05:33:14 +00:00
- label: Entrypoints Test
mirror_hardwares: [amd]
commands:
- pytest -v -s entrypoints -m llm
- pytest -v -s entrypoints -m openai
2024-01-17 05:33:14 +00:00
- label: Examples Test
working_dir: "/vllm-workspace/examples"
mirror_hardwares: [amd]
commands:
# install aws cli for llava_example.py
# install tensorizer for tensorize_vllm_model.py
- pip install awscli tensorizer
- python3 offline_inference.py
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 llava_example.py
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
2024-06-04 12:01:46 +08:00
- label: Inputs Test
#mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s test_inputs.py
- pytest -v -s multimodal
- label: Kernels Test %N
#mirror_hardwares: [amd]
command: pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
2024-01-14 12:37:58 -08:00
- label: Models Test
#mirror_hardwares: [amd]
2024-01-14 12:37:58 -08:00
commands:
- pytest -v -s models -m \"not vlm\"
2024-01-14 12:37:58 -08:00
- label: Vision Language Models Test
mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models -m vlm
- label: Prefix Caching Test
mirror_hardwares: [amd]
commands:
- pytest -v -s prefix_caching
2024-01-14 12:37:58 -08:00
- label: Samplers Test
#mirror_hardwares: [amd]
command: pytest -v -s samplers
2024-01-14 12:37:58 -08:00
- label: LogitsProcessor Test
mirror_hardwares: [amd]
command: pytest -v -s test_logits_processor.py
- label: Utils Test
command: pytest -v -s test_utils.py
2024-01-14 12:37:58 -08:00
- label: Worker Test
mirror_hardwares: [amd]
2024-01-14 12:37:58 -08:00
command: pytest -v -s worker
- label: Speculative decoding tests
#mirror_hardwares: [amd]
commands:
# See https://github.com/vllm-project/vllm/issues/5152
- export VLLM_ATTENTION_BACKEND=XFORMERS
- pytest -v -s spec_decode
- label: LoRA Test %N
#mirror_hardwares: [amd]
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
parallelism: 4
- label: LoRA Long Context (Distributed)
#mirror_hardwares: [amd]
num_gpus: 4
# This test runs llama 13B, so it is required to run on 4 GPUs.
commands:
- pytest -v -s -x lora/test_long_context.py
- label: Tensorizer Test
#mirror_hardwares: [amd]
command: apt-get install curl libsodium23 && pytest -v -s tensorizer_loader
- label: Metrics Test
mirror_hardwares: [amd]
command: pytest -v -s metrics
- label: Quantization Test
#mirror_hardwares: [amd]
command: pytest -v -s quantization
- label: Tracing Test
commands:
- "pip install \
opentelemetry-sdk \
opentelemetry-api \
opentelemetry-exporter-otlp \
opentelemetry-semantic-conventions-ai"
- pytest -v -s tracing
2024-01-14 12:37:58 -08:00
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
2024-01-14 12:37:58 -08:00
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Documentation Build
working_dir: "/vllm-workspace/test_docs/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html