vllm/tests/multimodal/test_processing.py

686 lines
20 KiB
Python
Raw Normal View History

from functools import partial
from typing import cast
import numpy as np
import pytest
from PIL import Image
from vllm.config import ModelConfig
from vllm.inputs import InputProcessingContext
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.processing import (ProcessingCache, PromptReplacement,
_PlaceholderInfo, find_text_matches,
find_token_matches, iter_placeholders,
iter_token_matches,
replace_text_matches,
replace_token_matches)
from vllm.multimodal.utils import cached_get_tokenizer
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils import full_groupby
# yapf: disable
@pytest.mark.parametrize(
("token_ids", "match_ids", "expected"),
[
([], [], []),
([], [32000], []),
(
[32000, 32000, 32000],
[32000],
[
{ "start_idx": 0, "end_idx": 1 },
{ "start_idx": 1, "end_idx": 2 },
{ "start_idx": 2, "end_idx": 3 },
],
),
(
[32000, 32000, 32000],
[32000, 32000],
[{ "start_idx": 0, "end_idx": 2 }],
),
(
[32000, 32000, 32000],
[32000, 32000, 32000],
[{ "start_idx": 0, "end_idx": 3 }],
),
(
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
[28747, 32000],
[
{ "start_idx": 1, "end_idx": 3 },
{ "start_idx": 6, "end_idx": 8 },
],
),
(
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
[28747, 32000, 32000, 32000],
[
{ "start_idx": 1, "end_idx": 5 },
],
),
(
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
[28747, 0, 32000],
[],
),
],
)
# yapf: enable
def test_iter_token_matches(token_ids, match_ids, expected):
result = list(iter_token_matches(token_ids, match_ids))
# Manually constructed results
assert [item._asdict() for item in result] == expected
# Invariants
match_lens = [end - start for start, end in result]
print("match_lens:", match_lens) # Only displayed on error
assert all(match_len == len(match_ids) for match_len in match_lens)
# yapf: disable
@pytest.mark.parametrize(
("prompt", "target_by_key", "expected_by_key"),
[
(
[],
{
"pattern_1": [],
"pattern_2": [32000],
},
{
"pattern_1": [],
"pattern_2": [],
}
),
(
[32000, 32000, 32000, 32000],
{
"pattern_1": [32000],
"pattern_2": [32000, 32000],
"pattern_3": [32000, 32000, 32000],
},
{
"pattern_1": [
{ "start_idx": 0, "end_idx": 1 },
{ "start_idx": 1, "end_idx": 2 },
{ "start_idx": 2, "end_idx": 3 },
{ "start_idx": 3, "end_idx": 4 },
],
"pattern_2": [
{ "start_idx": 0, "end_idx": 2 },
{ "start_idx": 2, "end_idx": 4 },
],
"pattern_3": [
{ "start_idx": 0, "end_idx": 3 },
],
},
),
(
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
{
"pattern_1": [28747, 32000],
"pattern_2": [28747, 32000, 32000, 32000],
"pattern_3": [28747, 0, 32000],
},
{
"pattern_1": [
{ "start_idx": 1, "end_idx": 3 },
{ "start_idx": 6, "end_idx": 8 },
],
"pattern_2": [
{ "start_idx": 1, "end_idx": 5 },
],
"pattern_3": [],
},
),
],
)
# yapf: enable
def test_find_token_matches(prompt, target_by_key, expected_by_key):
# Should not be used since there is nothing to convert to token IDs
mock_tokenizer = cast(AnyTokenizer, object())
prompt_repls = [
PromptReplacement(key, target, []).bind(mock_tokenizer)
for key, target in target_by_key.items()
]
result = find_token_matches(prompt, prompt_repls)
# Only displayed on error
print("result:", result)
# Manually constructed results
result_groups = dict(full_groupby(result, key=lambda x: x.modality))
assert {
key: [
dict(start_idx=item.start_idx, end_idx=item.end_idx)
for item in result_groups.get(key, [])
]
for key in expected_by_key
} == expected_by_key
# yapf: disable
@pytest.mark.parametrize(
("prompt", "target_by_key", "expected_by_key"),
[
# Detokenized test cases of `test_find_token_matches`
# using the vocab of llava-hf/llava-v1.6-mistral-7b-hf
(
"",
{
"pattern_1": "",
"pattern_2": "<image>",
},
{
"pattern_1": [{ "start_idx": 0, "end_idx": 0 }],
"pattern_2": [],
}
),
(
"<image><image><image><image>",
{
"pattern_1": "<image>",
"pattern_2": "<image><image>",
"pattern_3": "<image><image><image>",
},
{
"pattern_1": [
{ "start_idx": 0, "end_idx": 7 },
{ "start_idx": 7, "end_idx": 14 },
{ "start_idx": 14, "end_idx": 21 },
{ "start_idx": 21, "end_idx": 28 },
],
"pattern_2": [
{ "start_idx": 0, "end_idx": 14 },
{ "start_idx": 14, "end_idx": 28 },
],
"pattern_3": [
{ "start_idx": 0, "end_idx": 21 },
],
},
),
(
"Image:<image><image><image>Image:<image><image>!",
{
"pattern_1": "Image:<image>",
"pattern_2": "Image:<image><image><image>",
"pattern_3": "Image:<unk><image>",
},
{
"pattern_1": [
{ "start_idx": 0, "end_idx": 13 },
{ "start_idx": 27, "end_idx": 40 },
],
"pattern_2": [
{ "start_idx": 0, "end_idx": 27 },
],
"pattern_3": [],
},
),
# Test regex escape
(
"<|image|><image><|image|><image>",
{
"pattern_1": "<|image|>",
"pattern_2": "<|image|><image>",
"pattern_3": "<|image|><image><|image|>",
},
{
"pattern_1": [
{ "start_idx": 0, "end_idx": 9 },
{ "start_idx": 16, "end_idx": 25 },
],
"pattern_2": [
{ "start_idx": 0, "end_idx": 16 },
{ "start_idx": 16, "end_idx": 32 },
],
"pattern_3": [
{ "start_idx": 0, "end_idx": 25 },
],
},
),
],
)
# yapf: enable
def test_find_text_matches(prompt, target_by_key, expected_by_key):
# Should not be used since there is nothing to convert to text
mock_tokenizer = cast(AnyTokenizer, object())
prompt_repls = [
PromptReplacement(key, target, []).bind(mock_tokenizer)
for key, target in target_by_key.items()
]
result = find_text_matches(prompt, prompt_repls)
# Only displayed on error
print("result:", result)
# Manually constructed results
result_groups = dict(full_groupby(result, key=lambda x: x.modality))
assert {
key: [
dict(start_idx=item.start_idx, end_idx=item.end_idx)
for item in result_groups.get(key, [])
]
for key in expected_by_key
} == expected_by_key
# yapf: disable
@pytest.mark.parametrize(
("prompt", "target_by_key", "repl_by_key"),
[
(
"Image:<image>Image:<image><image>!",
{
# We use `<image>` before `Image:` to test matches that
# occur out of order
"pattern_1": "<image>",
"pattern_2": "Image:",
"pattern_3": "!",
},
{
# Test whether target is confused with replacement
"pattern_1": "<image><image>",
# Test empty replacement
"pattern_2": "",
# Test dynamic replacement (beyond the form of `unit * count`)
"pattern_3": "?!?",
},
),
]
)
@pytest.mark.parametrize(
("mm_count", "expected"),
[
(0, "Image:<image>Image:<image><image>!"),
(1, "<image><image>Image:<image><image>?!?"),
(2, "<image><image><image><image><image>?!?"),
]
)
# yapf: enable
def test_find_replace_text(
prompt,
target_by_key,
repl_by_key,
mm_count,
expected,
):
# Should not be used since there is nothing to convert to text
mock_tokenizer = cast(AnyTokenizer, object())
prompt_repls = [
PromptReplacement(key, target, repl_by_key[key]).bind(mock_tokenizer)
for key, target in target_by_key.items()
]
matches = find_text_matches(prompt, prompt_repls)
result = replace_text_matches(
prompt,
matches,
{key: mm_count
for key in repl_by_key},
)
# Only displayed on error
print("matches:", matches)
print("result:", result)
# Manually constructed results
assert result == expected
# yapf: disable
@pytest.mark.parametrize(
("prompt", "target_by_key", "repl_by_key"),
[
# Tokenized test cases of `test_find_replace_text`
# using the vocab of llava-hf/llava-v1.6-mistral-7b-hf
(
[1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918],
{
# We use `<image>` before `Image:` to test matches that
# occur out of order
"pattern_1": [32000],
"pattern_2": [9833, 28747],
"pattern_3": [918],
},
{
# Test whether target is confused with replacement
"pattern_1": [32000, 32000],
# Test empty replacement
"pattern_2": [],
# Test dynamic replacement (beyond the form of `unit * count`)
"pattern_3": [1550, 918, 1550],
},
),
]
)
@pytest.mark.parametrize(
("mm_count", "expected"),
[
(0, [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918]),
(1, [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550]),
(2, [1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550]),
]
)
# yapf: enable
def test_find_replace_tokens(
prompt,
target_by_key,
repl_by_key,
mm_count,
expected,
):
# Should not be used since there is nothing to convert to tokens
mock_tokenizer = cast(AnyTokenizer, object())
prompt_repls = [
PromptReplacement(key, target, repl_by_key[key]).bind(mock_tokenizer)
for key, target in target_by_key.items()
]
matches = find_token_matches(prompt, prompt_repls)
result = replace_token_matches(
prompt,
matches,
{key: mm_count
for key in repl_by_key},
)
# Only displayed on error
print("matches:", matches)
print("result:", result)
# Manually constructed results
assert result == expected
# yapf: disable
@pytest.mark.parametrize(
"repl_by_key",
[
{
"pattern_1": [32000, 32000],
"pattern_2": [],
"pattern_3": [1550, 918, 1550],
},
],
)
@pytest.mark.parametrize(
("prompt", "expected"),
[
(
[1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918],
[
_PlaceholderInfo(
modality="pattern_1",
start_idx=6,
replacement=[32000, 32000],
),
],
),
(
[1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550],
[
_PlaceholderInfo(
modality="pattern_1",
start_idx=1,
replacement=[32000, 32000],
),
_PlaceholderInfo(
modality="pattern_1",
start_idx=5,
replacement=[32000, 32000],
),
_PlaceholderInfo(
modality="pattern_3",
start_idx=7,
replacement=[1550, 918, 1550],
),
],
),
(
[1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550],
[
_PlaceholderInfo(
modality="pattern_1",
start_idx=1,
replacement=[32000, 32000],
),
_PlaceholderInfo(
modality="pattern_1",
start_idx=3,
replacement=[32000, 32000],
),
_PlaceholderInfo(
modality="pattern_3",
start_idx=6,
replacement=[1550, 918, 1550],
),
],
),
]
)
# yapf: enable
def test_iter_placeholders(
repl_by_key,
prompt,
expected,
):
# Should not be used since there is nothing to convert to tokens
mock_tokenizer = cast(AnyTokenizer, object())
prompt_repls = [
PromptReplacement(key, [], repl).bind(mock_tokenizer)
for key, repl in repl_by_key.items()
]
result = list(
iter_placeholders(
prompt_repls,
prompt,
# Effectively match all occurrences in the prompt
{key: 3
for key in repl_by_key},
))
# Only displayed on error
print("result:", result)
# Manually constructed results
assert result == expected
def _rand_img(rng: np.random.RandomState, min_wh: int, max_wh: int):
w, h = rng.randint(min_wh, max_wh, size=(2, ))
arr = rng.randint(0, 255, size=(w, h, 3), dtype=np.uint8)
return Image.fromarray(arr)
def _rand_video(
rng: np.random.RandomState,
min_frames: int,
max_frames: int,
min_wh: int,
max_wh: int,
):
# Temporary workaround for https://github.com/huggingface/transformers/issues/35412
num_frames = rng.randint(min_frames, max_frames)
num_frames = (num_frames // 2) * 2
w, h = rng.randint(min_wh, max_wh, size=(2, ))
return rng.randint(0, 255, size=(num_frames, w, h, 3), dtype=np.uint8)
def _rand_audio(
rng: np.random.RandomState,
min_len: int,
max_len: int,
sr: int,
):
audio_len = rng.randint(min_len, max_len)
return rng.rand(audio_len), sr
def _test_processing_cache_correctness(
model_id: str,
modalities: dict[str, bool],
hit_rate: float,
num_batches: int,
simplify_rate: float,
):
if model_id == "TIGER-Lab/Mantis-8B-siglip-llama3":
hf_overrides = {"architectures": ["MantisForConditionalGeneration"]}
else:
hf_overrides = {}
model_config = ModelConfig(
model_id,
task="auto",
tokenizer=model_id,
tokenizer_mode="auto",
trust_remote_code=True,
seed=0,
dtype="float16",
revision=None,
hf_overrides=hf_overrides,
)
model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config)
processor_factory = MULTIMODAL_REGISTRY._processor_factories[model_cls]
ctx = InputProcessingContext(
model_config,
tokenizer=cached_get_tokenizer(model_config.tokenizer),
)
# Ensure that it can fit all of the data
cache = ProcessingCache(capacity=1 << 30)
baseline_processor = processor_factory(ctx, cache=None)
cached_processor = processor_factory(ctx, cache=cache)
rng = np.random.RandomState(0)
input_to_hit = {
"image": Image.new("RGB", size=(128, 128)),
"video": np.zeros((4, 128, 128, 3), dtype=np.uint8),
"audio": (np.zeros((512, )), 16000),
}
input_factory = {
"image":
partial(_rand_img, rng, min_wh=128, max_wh=256),
"video":
partial(_rand_video,
rng,
min_frames=2,
max_frames=8,
min_wh=128,
max_wh=256),
"audio":
partial(_rand_audio, rng, min_len=256, max_len=512, sr=16000),
}
input_max_count = {
modality: 3 if supports_multi else 1
for modality, supports_multi in modalities.items()
}
for batch_idx in range(num_batches):
mm_data = {
k:
[(input_to_hit[k] if rng.rand() < hit_rate else input_factory[k]())
for _ in range(rng.randint(input_max_count[k]))]
for k in modalities
}
mm_counts = {k: len(vs) for k, vs in mm_data.items()}
prompt = baseline_processor._get_dummy_mm_inputs(mm_counts).prompt_text
# Drop unnecessary keys and test single -> multi conversion
if rng.rand() < simplify_rate:
for k in list(mm_data.keys()):
if not mm_data[k]:
del mm_data[k]
elif len(mm_data[k]) == 1:
mm_data[k] = mm_data[k][0]
baseline_result = baseline_processor.apply(
prompt,
mm_data=mm_data,
hf_processor_mm_kwargs={},
)
cached_result = cached_processor.apply(
prompt,
mm_data=mm_data,
hf_processor_mm_kwargs={},
)
assert baseline_result == cached_result, (
f"Failed ({batch_idx=}, {mm_data=})")
# yapf: disable
@pytest.mark.parametrize(("model_id", "modalities"), [
("rhymes-ai/Aria", {"image": True}),
("Salesforce/blip2-opt-2.7b", {"image": False}),
("facebook/chameleon-7b", {"image": True}),
("adept/fuyu-8b", {"image": False}),
("llava-hf/llava-1.5-7b-hf", {"image": True}),
("TIGER-Lab/Mantis-8B-siglip-llama3", {"image": True}),
("mistral-community/pixtral-12b", {"image": True}),
("Qwen/Qwen2-VL-2B-Instruct", {"image": True, "video": True}),
("Qwen/Qwen2-Audio-7B-Instruct", {"audio": True}),
("fixie-ai/ultravox-v0_3", {"audio": True}),
])
@pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0])
@pytest.mark.parametrize("num_batches", [32])
@pytest.mark.parametrize("simplify_rate", [1.0])
# yapf: enable
def test_processing_cache_correctness(
model_id: str,
modalities: dict[str, bool],
hit_rate: float,
num_batches: int,
simplify_rate: float,
):
_test_processing_cache_correctness(
model_id,
modalities,
hit_rate=hit_rate,
num_batches=num_batches,
simplify_rate=simplify_rate,
)
# yapf: disable
@pytest.mark.parametrize(("model_id", "modalities"), [
("microsoft/Phi-3-vision-128k-instruct", {"image": True}),
])
@pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0])
@pytest.mark.parametrize("num_batches", [32])
@pytest.mark.parametrize("simplify_rate", [1.0])
# yapf: enable
def test_processing_cache_correctness_phi3v(
model_id: str,
modalities: dict[str, bool],
hit_rate: float,
num_batches: int,
simplify_rate: float,
):
# HACK - this is an attempted workaround for the following bug
# https://github.com/huggingface/transformers/issues/34307
from transformers import AutoImageProcessor # noqa: F401
from transformers import AutoProcessor # noqa: F401
AutoImageProcessor.from_pretrained(model_id, trust_remote_code=True)
_test_processing_cache_correctness(
model_id,
modalities,
hit_rate=hit_rate,
num_batches=num_batches,
simplify_rate=simplify_rate,
)