vllm/tests/tokenization/test_tokenizer_group.py

101 lines
3.7 KiB
Python
Raw Normal View History

2024-03-15 16:37:01 -07:00
import os
import pytest
import asyncio
from unittest.mock import patch
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer_group import get_tokenizer_group
from vllm.transformers_utils.tokenizer_group.ray_tokenizer_group import (
RayTokenizerGroupPool)
from vllm.transformers_utils.tokenizer_group.tokenizer_group import (
TokenizerGroup)
from ..conftest import get_tokenizer_pool_config
@pytest.mark.asyncio
@pytest.mark.parametrize("tokenizer_group_type", [None, "ray"])
async def test_tokenizer_group(tokenizer_group_type):
reference_tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer_group = get_tokenizer_group(
get_tokenizer_pool_config(tokenizer_group_type),
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None,
)
assert reference_tokenizer.encode("prompt") == tokenizer_group.encode(
request_id="request_id", prompt="prompt", lora_request=None)
assert reference_tokenizer.encode(
"prompt") == await tokenizer_group.encode_async(
request_id="request_id", prompt="prompt", lora_request=None)
assert isinstance(tokenizer_group.get_lora_tokenizer(None),
PreTrainedTokenizerBase)
assert tokenizer_group.get_lora_tokenizer(
None) == await tokenizer_group.get_lora_tokenizer_async(None)
@pytest.mark.asyncio
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
async def test_tokenizer_group_pool(tokenizer_group_type):
reference_tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer_group_pool = get_tokenizer_group(
get_tokenizer_pool_config(tokenizer_group_type),
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None,
)
# Send multiple requests to the tokenizer group pool
# (more than the pool size)
# and check that all requests are processed correctly.
num_requests = tokenizer_group_pool.pool_size * 5
requests = [
tokenizer_group_pool.encode_async(request_id=str(i),
prompt=f"prompt {i}",
lora_request=None)
for i in range(num_requests)
]
results = await asyncio.gather(*requests)
expected_results = [
reference_tokenizer.encode(f"prompt {i}") for i in range(num_requests)
]
assert results == expected_results
@pytest.mark.asyncio
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
async def test_tokenizer_group_ray_pool_env_var_propagation(
tokenizer_group_type):
"""Test that env vars from caller process are propagated to
tokenizer Ray actors."""
env_var = "MY_ENV_VAR"
class EnvVarCheckerTokenizerGroup(TokenizerGroup):
def ping(self):
assert os.environ.get(env_var) == "1"
return super().ping()
class EnvVarCheckerRayTokenizerGroupPool(RayTokenizerGroupPool):
_worker_cls = EnvVarCheckerTokenizerGroup
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
tokenizer_pool = EnvVarCheckerRayTokenizerGroupPool.from_config(
tokenizer_pool_config,
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None)
with pytest.raises(AssertionError):
tokenizer_pool.ping()
with patch.dict(os.environ, {env_var: "1"}):
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
tokenizer_pool = EnvVarCheckerRayTokenizerGroupPool.from_config(
tokenizer_pool_config,
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None)
tokenizer_pool.ping()