258 lines
8.2 KiB
Python
Raw Normal View History

import torch
from typing import List, Optional, Dict, Iterable, Union
from unittest.mock import MagicMock
from vllm.worker.worker import Worker
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
from vllm.engine.arg_utils import EngineArgs
from vllm.sequence import (Logprob, SequenceGroupMetadata, SequenceData,
SamplerOutput, SequenceGroupOutput, SequenceOutput)
from vllm.sampling_params import SamplingParams
from vllm.worker.cache_engine import CacheEngine
from vllm.model_executor.utils import set_random_seed
from itertools import count
from dataclasses import dataclass, fields
@dataclass
class ExecuteModelData:
"""Helper data structure which facilitates cleaner tests.
"""
seq_group_metadata_list: List[SequenceGroupMetadata]
blocks_to_swap_in: Dict[int, int]
blocks_to_swap_out: Dict[int, int]
blocks_to_copy: Dict[int, List[int]]
def to_dict(self):
return dict(
(field.name, getattr(self, field.name)) for field in fields(self))
@classmethod
def from_dict(cls, d):
cleaned = dict((field.name, d[field.name]) for field in fields(cls))
return cls(**cleaned)
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size
def create_execute_model_data(
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Optional[Dict[int, int]] = None,
blocks_to_swap_out: Optional[Dict[int, int]] = None,
blocks_to_copy: Optional[Dict[int, int]] = None,
) -> ExecuteModelData:
if blocks_to_swap_in is None:
blocks_to_swap_in = {}
if blocks_to_swap_out is None:
blocks_to_swap_out = {}
if blocks_to_copy is None:
blocks_to_copy = {}
return ExecuteModelData(
seq_group_metadata_list=seq_group_metadata_list,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
)
def mock_worker(cls=None,
vocab_size: int = 30_000,
max_model_len: int = 2048,
rank: int = 0) -> MagicMock:
if cls is None:
cls = Worker
worker = MagicMock(spec=cls)
worker.vocab_size = vocab_size
worker.max_model_len = max_model_len
worker.rank = rank
worker.device = 'cuda:0'
return worker
def patch_execute_model_with_seeds(worker: Worker, rand_seeds: List[int]):
seed_iter = iter(rand_seeds)
original_execute_model = worker.execute_model
def new_execute_model(*args, **kwargs):
result = original_execute_model(*args, **kwargs)
set_random_seed(next(seed_iter))
return result
return new_execute_model
def zero_kv_cache(cache_engine: CacheEngine):
assert cache_engine.gpu_cache
for key_blocks, value_blocks in cache_engine.gpu_cache:
key_blocks.zero_()
value_blocks.zero_()
def create_worker(cls: type,
model_name: str,
block_size: int,
num_gpu_blocks: int,
seed: int,
is_driver_worker: bool = True,
enforce_eager: bool = True):
engine_args = EngineArgs(
model=model_name,
seed=seed,
block_size=block_size,
enforce_eager=enforce_eager,
)
(model_config, cache_config, parallel_config, scheduler_config,
device_config, _) = engine_args.create_engine_configs()
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
worker = cls(
model_config=model_config,
parallel_config=parallel_config,
scheduler_config=scheduler_config,
device_config=device_config,
local_rank=0,
rank=0,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker,
)
worker.init_device()
worker.load_model()
cache_config.num_gpu_blocks = num_gpu_blocks
cache_config.num_cpu_blocks = 0
worker.init_cache_engine(cache_config)
worker.warm_up_model()
return worker
def create_seq_group_metadata_from_prompts(
prompts: List[List[int]],
num_gpu_blocks: int,
block_size: int,
final_seq_lens: List[int],
continuations: Optional[List[List[int]]] = None,
seq_ids: Optional[List[int]] = None,
) -> List[SequenceGroupMetadata]:
if continuations is None:
continuations = [[] for _ in prompts]
if seq_ids is None:
seq_ids = list(i for i, _ in enumerate(prompts))
free_gpu_blocks = list(range(num_gpu_blocks))
block_allocations = {
i: [
free_gpu_blocks.pop()
for _ in range(round_up_to_next_block(final_len, block_size))
]
for i, final_len in enumerate(final_seq_lens)
}
return [
SequenceGroupMetadata(
request_id=str(i),
is_prompt=len(cont_token_ids) == 0,
seq_data={
i:
SequenceData(
prompt_token_ids=prompt_token_ids[:],
output_token_ids=cont_token_ids[:],
),
},
sampling_params=SamplingParams(temperature=0.0, ),
block_tables={i: block_allocations[i][:]},
) for i, (prompt_token_ids,
cont_token_ids) in enumerate(zip(prompts, continuations))
]
def assert_logprobs_dict_allclose(
actual_logprobs: List[Dict[int, Logprob]],
expected_logprobs: List[Dict[int, Logprob]]) -> None:
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
actual_logprobs, expected_logprobs):
assert set(single_step_actual_logprobs.keys()) == set(
single_step_expected_logprobs.keys())
for token_id in single_step_actual_logprobs:
actual = torch.tensor(
single_step_actual_logprobs[token_id].logprob)
expected = torch.tensor(
single_step_expected_logprobs[token_id].logprob)
assert torch.allclose(actual, expected)
def create_sampler_output_list(
token_ids: torch.Tensor,
probs: Iterable[Optional[torch.Tensor]],
seq_ids: Optional[List[int]] = None) -> List[SamplerOutput]:
num_steps, batch_size = token_ids.shape
token_ids_by_step = token_ids.tolist()
if seq_ids is None:
seq_ids = list(range(batch_size))
return [
SamplerOutput(outputs=[
SequenceGroupOutput(
samples=[
SequenceOutput(
output_token=token_id,
parent_seq_id=seq_ids[seq_index],
logprobs={token_id: 0},
)
],
prompt_logprobs=None,
) for seq_index, token_id in enumerate(token_ids_by_step[step])
],
sampled_token_probs=probs[step],
sampled_token_ids=token_ids[step])
for step in range(num_steps)
]
def create_batch(batch_size,
k,
prompt_len: Union[int, List[int]] = 10,
prev_output_token_len: int = 10,
seq_ids: Optional[List[int]] = None,
num_gpu_blocks: Optional[int] = None,
block_size: Optional[int] = None):
if block_size is None:
block_size = 8
if num_gpu_blocks is None:
num_gpu_blocks = 2048 // block_size
iterator = count()
if isinstance(prompt_len, int):
prompt_lens = [prompt_len for _ in range(batch_size)]
else:
prompt_lens = prompt_len
prompts = [[next(iterator) for _ in range(p_len)] for p_len in prompt_lens]
prev_output_tokens = [[
next(iterator) for _ in range(prev_output_token_len)
] for _ in range(batch_size)]
final_seq_lens = [
len(prompt) + len(prev_output_token) + k + 1
for prompt, prev_output_token in zip(prompts, prev_output_tokens)
]
execute_model_data = create_execute_model_data(
create_seq_group_metadata_from_prompts(prompts, num_gpu_blocks,
block_size, final_seq_lens,
prev_output_tokens, seq_ids), )
return execute_model_data, prompts, prev_output_tokens