vllm/tests/entrypoints/openai/test_accuracy.py

54 lines
1.6 KiB
Python
Raw Normal View History

"""
This file test accuracy of the vLLM server via LMEval.
It uses local-completions, which interacts with vLLM
through the OAI API with N concurrent connections.
This simulates real work usage of the API and makes
sure that the zmq frontend mp RPC message passing and
AsyncLLMEngine are working correctly.
"""
import lm_eval
import pytest
from ...utils import RemoteOpenAIServer
MODEL_NAME = "Qwen/Qwen2-1.5B-Instruct"
NUM_CONCURRENT = 500
TASK = "gsm8k"
FILTER = "exact_match,strict-match"
RTOL = 0.03
EXPECTED_VALUE = 0.58
DEFAULT_ARGS = ["--max-model-len", "4096", "--disable-log-requests"]
MORE_ARGS_LIST = [
["--enable-chunked-prefill"], # Chunked
["--num-scheduler-steps", "8"], # MS
["--num-scheduler-steps", "8", "--multi-step-stream-outputs"] # MS+Stream
]
@pytest.mark.parametrize("more_args", MORE_ARGS_LIST)
def test_lm_eval_accuracy(more_args):
args = list(DEFAULT_ARGS)
args.extend(more_args)
print(f"Running with: {args}")
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
url = f"{remote_server.url_for('v1')}/completions"
model_args = (
f"model={MODEL_NAME},"
f"base_url={url},"
f"num_concurrent={NUM_CONCURRENT},tokenized_requests=False")
results = lm_eval.simple_evaluate(
model="local-completions",
model_args=model_args,
tasks=TASK,
)
measured_value = results["results"][TASK][FILTER]
assert (measured_value - RTOL < EXPECTED_VALUE
and measured_value + RTOL > EXPECTED_VALUE
), f"Expected: {EXPECTED_VALUE} | Measured: {measured_value}"