vllm/benchmarks/kernels/benchmark_lora.py

1150 lines
43 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
import argparse
import copy
import json
import pickle
import time
from dataclasses import dataclass
from enum import Enum, auto
from itertools import product
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from utils import ArgPool, Bench, CudaGraphBenchParams
from weight_shapes import WEIGHT_SHAPES
from vllm.lora.ops.triton_ops.bgmv_expand import bgmv_expand
from vllm.lora.ops.triton_ops.bgmv_expand_slice import bgmv_expand_slice
from vllm.lora.ops.triton_ops.bgmv_shrink import bgmv_shrink
from vllm.lora.ops.triton_ops.sgmv_expand import sgmv_expand
from vllm.lora.ops.triton_ops.sgmv_shrink import sgmv_shrink
from vllm.lora.ops.triton_ops.utils import _LORA_A_PTR_DICT, _LORA_B_PTR_DICT
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_TP_SIZES = [1]
DEFAULT_BATCH_SIZES = [
1, 16, 32, 64, 128, 192, 256, 320, 384, 448, 512, 640, 768, 896, 1024,
2048, 3072, 4096, 5120, 6144, 7168, 8192
]
DEFAULT_HIDDEN_SIZES = [1024, 2048, 4096, 8192, 16384]
DEFAULT_LORA_RANKS = [16]
DEFAULT_NUM_LORAS = [1, 2, 3, 4]
DEFAULT_SORT_BY_LORA_IDS = [False, True]
DEFAULT_SEQ_LENGTHS = [1]
DEFAULT_EXPAND_FN_ADD_INPUTS = [True, False]
# Utilities
def dtype_to_str(dtype: torch.dtype):
if dtype == torch.float16:
return "f16"
if dtype == torch.bfloat16:
return "bf16"
if dtype == torch.float32:
return "f32"
raise ValueError(f"Unsupported dtype {dtype}")
def make_rand_lora_weight_tensor(k: int,
n: int,
num_loras: int,
dtype: torch.dtype,
device: str = "cuda") -> torch.Tensor:
# LoRA weights column major
return torch.rand((num_loras, n, k), dtype=dtype).to(device)
def make_rand_tensors(
a_shape: Tuple[int],
b_shape: Tuple[int],
c_shape: Tuple[int],
a_dtype: torch.dtype,
b_dtype: torch.dtype,
c_dtype: torch.dtype,
num_slices: int,
device: str = "cuda",
) -> Tuple[torch.Tensor, List[torch.Tensor], torch.Tensor]:
"""
Make LoRA input/output matrices.
"""
A = torch.rand(a_shape, dtype=a_dtype).to(device)
# LoRA weights column major
Bs = [
torch.rand(b_shape, dtype=b_dtype).to(device)
for _ in range(num_slices)
]
C = torch.zeros(c_shape, dtype=c_dtype).to(device)
return A, Bs, C
def make_prompt_lora_mapping(num_prompts: int, num_active_loras: int,
sort_by_lora_id: bool,
device: str) -> torch.Tensor:
"""
All prompts are mapped to a Lora ID in range [0, num_active_loras).
where 0 refers to first lora, 1 refers to second lora and so on.
"""
assert num_active_loras > 0
if not sort_by_lora_id:
return torch.randint(0,
num_active_loras, (num_prompts, ),
dtype=torch.long)
# Divide LoRAs equally and in order.
part_size = num_prompts // num_active_loras
part_size = max(part_size, 1)
lora_id = 0
prompt_lora_mapping = []
while len(prompt_lora_mapping) < num_prompts:
prompt_lora_mapping.extend([lora_id] * part_size)
lora_id = lora_id + 1 if lora_id + 1 < num_active_loras else lora_id
return torch.tensor(prompt_lora_mapping[:num_prompts],
dtype=torch.long,
device=device)
def make_token_lora_mapping(num_tokens: int, num_prompts: int,
prompt_lora_mapping: torch.Tensor,
seq_len_tensor: torch.Tensor, device: str):
"""
Make token_lora_mapping from prompt_lora_mapping and seq_lens_tensor
"""
assert prompt_lora_mapping.shape[0] == num_prompts
# token to lora index mapping
token_lora_mapping = [0] * num_tokens
current_offset = 0
for b_id in range(num_prompts):
lora_index = prompt_lora_mapping[b_id].item()
s = current_offset
e = s + seq_len_tensor[b_id].item()
token_lora_mapping[s:e] = [lora_index] * (e - s)
current_offset += seq_len_tensor[b_id].item()
return torch.tensor(token_lora_mapping, dtype=torch.long, device=device)
def ref_group_gemm(ref_out: torch.Tensor, input: torch.Tensor,
lora_weights: List[torch.Tensor],
seq_lens_cpu: torch.Tensor,
prompt_lora_mapping_cpu: torch.Tensor, scaling: float,
add_inputs: Optional[bool]):
"""
Torch group gemm reference implementation to test correctness of
benchmarking operations.
"""
batches = seq_lens_cpu.size(0)
out_list = []
current_offset = 0
for lora_index, b_length in zip(range(batches), seq_lens_cpu):
x = input[current_offset:b_length + current_offset, :]
current_offset += b_length
w = lora_weights[prompt_lora_mapping_cpu[lora_index]]
result = torch.nn.functional.linear(x, w)
result *= scaling
out_list.append(result)
torch.cat(out_list, dim=0)
cat_result = torch.cat(out_list, dim=0)
if add_inputs:
ref_out += cat_result
else:
ref_out.copy_(cat_result)
class OpType(Enum):
"""
LoRA Ops to benchmark and its properties.
"""
SGMV_SHRINK = auto()
BGMV_SHRINK = auto()
SGMV_EXPAND = auto()
BGMV_EXPAND = auto()
BGMV_EXPAND_SLICE = auto()
@staticmethod
def from_str(s: str) -> "OpType":
if s.lower() == 'sgmv_shrink':
return OpType.SGMV_SHRINK
if s.lower() == 'sgmv_expand':
return OpType.SGMV_EXPAND
if s.lower() == 'bgmv_shrink':
return OpType.BGMV_SHRINK
if s.lower() == 'bgmv_expand':
return OpType.BGMV_EXPAND
if s.lower() == "bgmv_expand_slice":
return OpType.BGMV_EXPAND_SLICE
raise ValueError(f"Unrecognized str {s} to convert to OpType")
def is_shrink_fn(self) -> bool:
return self in [OpType.SGMV_SHRINK, OpType.BGMV_SHRINK]
def is_expand_fn(self) -> bool:
return self in [OpType.SGMV_EXPAND, OpType.BGMV_EXPAND]
def is_prefill_op(self) -> bool:
return self in [OpType.SGMV_SHRINK, OpType.SGMV_EXPAND]
def is_decode_op(self) -> bool:
return self in [
OpType.BGMV_SHRINK, OpType.BGMV_EXPAND, OpType.BGMV_EXPAND_SLICE
]
def is_expand_slice_fn(self) -> bool:
return self in [OpType.BGMV_EXPAND_SLICE]
def num_slices(self) -> List[int]:
if self in [OpType.SGMV_EXPAND, OpType.SGMV_SHRINK]:
# SGMV kernels supports slices
return [1, 2, 3]
if self in [OpType.BGMV_SHRINK, OpType.BGMV_EXPAND]:
return [1]
if self in [OpType.BGMV_EXPAND_SLICE]:
return [2, 3]
raise ValueError(f"Unrecognized OpType {self}")
def mkn(self, batch_size: int, seq_length: int, hidden_size: int,
lora_rank: int) -> Tuple[int, int, int]:
num_tokens = batch_size * seq_length
if self.is_shrink_fn():
m = num_tokens
k = hidden_size
n = lora_rank
else:
assert self.is_expand_fn() or self.is_expand_slice_fn()
m = num_tokens
k = lora_rank
n = hidden_size
return m, k, n
def matmul_dtypes(
self, op_dtype: torch.dtype
) -> Tuple[torch.dtype, torch.dtype, torch.dtype]:
"""
return a type, b type and c type for A x B = C
"""
if self.is_shrink_fn():
return op_dtype, op_dtype, torch.float32
else:
assert self.is_expand_fn() or self.is_expand_slice_fn()
return torch.float32, op_dtype, op_dtype
def matmul_shapes(
self, batch_size: int, seq_length: int, hidden_size: int,
lora_rank: int, num_loras: int,
num_slices: int) -> Tuple[Tuple[int], Tuple[int], Tuple[int]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
in A x B = C, for the op_type
"""
m, k, n = self.mkn(batch_size, seq_length, hidden_size, lora_rank)
b_shape = (num_loras, n, k) # col-major
if self == OpType.SGMV_SHRINK:
# SGMV shrink supports num_slices inherently in the kernel
return ((m, k), b_shape, (num_slices, m, n))
if self == OpType.SGMV_EXPAND:
# SGMV expand supports num_slices inherently in the kernel
return ((num_slices, m, k), b_shape, (m, n * num_slices))
if self == OpType.BGMV_SHRINK:
return ((m, k), b_shape, (m, n))
if self == OpType.BGMV_EXPAND:
return ((m, k), b_shape, (m, n))
if self == OpType.BGMV_EXPAND_SLICE:
return ((num_slices, m, k), b_shape, (m, n * num_slices))
raise ValueError(f"Unrecognized op_type {self}")
def bench_fn(self) -> Callable:
def emulate_bgmv_expand_slice(kwargs_list: List[Dict[str, Any]]):
for x in kwargs_list:
bgmv_expand_slice(**x)
if self == OpType.SGMV_SHRINK:
return sgmv_shrink
if self == OpType.SGMV_EXPAND:
return sgmv_expand
if self == OpType.BGMV_SHRINK:
return bgmv_shrink
if self == OpType.BGMV_EXPAND:
return bgmv_expand
if self == OpType.BGMV_EXPAND_SLICE:
return emulate_bgmv_expand_slice
raise ValueError(f"Unrecognized optype {self}")
def run_ref_group_gemm(self, output: torch.Tensor, input: torch.Tensor,
lora_weights: List[torch.Tensor],
**kwargs) -> Callable:
"""Each benchmark operation expected the input, lora_weights and outputs
in a slightly different format. Refer to self.matmul_shapes().
run_ref_group_gemm accounts for those differences in executing a
reference group gemm for correctness testing.
"""
w_dtype = lora_weights[0].dtype
num_slices = len(lora_weights)
if self == OpType.SGMV_SHRINK:
for slice_idx in range(num_slices):
ref_group_gemm(ref_out=output[slice_idx, :],
input=input,
lora_weights=lora_weights[slice_idx],
**kwargs)
if self == OpType.SGMV_EXPAND:
hidden_size = lora_weights[0].shape[1]
for slice_idx in range(num_slices):
slice_offset = slice_idx * hidden_size
ref_group_gemm(
ref_out=output[:, slice_offset:slice_offset + hidden_size],
input=input[slice_idx].clone().to(dtype=w_dtype),
lora_weights=lora_weights[slice_idx],
**kwargs)
if self == OpType.BGMV_SHRINK:
assert num_slices == 1
ref_group_gemm(ref_out=output,
input=input,
lora_weights=lora_weights[0],
**kwargs)
if self == OpType.BGMV_EXPAND:
assert num_slices == 1
ref_group_gemm(ref_out=output,
input=input.clone().to(dtype=w_dtype),
lora_weights=lora_weights[0],
**kwargs)
if self == OpType.BGMV_EXPAND_SLICE:
hidden_size = lora_weights[0].shape[1]
for slice_idx in range(num_slices):
slice_offset = slice_idx * hidden_size
ref_group_gemm(
ref_out=output[:, slice_offset:slice_offset + hidden_size],
input=input[slice_idx].clone().to(dtype=w_dtype),
lora_weights=lora_weights[slice_idx],
**kwargs)
raise ValueError(f"Unrecognized optype {self}")
@dataclass
class BenchmarkContext:
"""
LoRA benchmark context
"""
batch_size: int
hidden_size: int
num_loras: int
num_active_loras: int
lora_rank: int
sort_by_lora_id: bool
dtype: torch.dtype
seq_length: Optional[int] = None
num_slices: Optional[int] = None # num_slices for slice based ops
def with_seq_length(self, seq_length: int) -> "BenchmarkContext":
ctx = copy.copy(self)
ctx.seq_length = seq_length
return ctx
def with_num_slices(self, num_slices: int) -> "BenchmarkContext":
ctx = copy.copy(self)
ctx.num_slices = num_slices
return ctx
def bench_label(self) -> str:
return f"lora-{self.dtype}"
def bench_sublabel(self, op_type: OpType) -> str:
m, k, n = op_type.mkn(self.batch_size, self.seq_length,
self.hidden_size, self.lora_rank)
desc = {
'bs': self.batch_size,
'sl': self.seq_length,
'm': m,
'k': k,
'n': n,
'num_loras': self.num_loras,
'sort_by_lora': self.sort_by_lora_id,
'num_slices': self.num_slices,
}
return json.dumps(desc)
@dataclass
class BenchmarkTensors:
"""
Input/Output tensors used for benchmarks
"""
# matmul tensors
input: torch.Tensor
lora_weights_lst: List[torch.Tensor]
output: torch.Tensor
# metadata tensors
seq_lens: torch.Tensor
seq_start_loc: torch.Tensor
prompt_lora_mapping: torch.Tensor
token_lora_mapping: torch.Tensor
def io_types(self) -> str:
return (f"{dtype_to_str(self.input.dtype)}x"
f"{dtype_to_str(self.lora_weights_lst[0].dtype)}=>"
f"{dtype_to_str(self.output.dtype)}")
@staticmethod
def make(ctx: BenchmarkContext,
op_type: OpType,
device: str = "cuda") -> "BenchmarkTensors":
# Make input / output matmul tensors.
a_shape, b_shape, c_shape = op_type.matmul_shapes(
ctx.batch_size, ctx.seq_length, ctx.hidden_size, ctx.lora_rank,
ctx.num_loras, ctx.num_slices)
a_type, b_type, c_type = op_type.matmul_dtypes(ctx.dtype)
input_tensor, lora_weights, output_tensor = \
make_rand_tensors(a_shape, b_shape, c_shape, a_type, b_type, c_type,
num_slices = ctx.num_slices)
# Make metadata tensors.
# Keep the metadata tensors in the CPU for further processing if needed.
# The tensors get moved to the GPU before benchmarking.
assert ctx.num_active_loras <= ctx.num_loras
total_tokens = ctx.batch_size * ctx.seq_length
# Prepare seq lens tensor
seq_len_tensor = torch.randint(ctx.seq_length, ctx.seq_length + 1,
(ctx.batch_size, ))
# Prepare seq_start_loc tensor
seq_start_loc_tensor = torch.cumsum(torch.tensor(
[0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
dim=0)
assert total_tokens == seq_len_tensor.sum()
# Prepare prompt lora indices tensor
prompt_lora_indices_tensor = make_prompt_lora_mapping(
ctx.batch_size, ctx.num_active_loras, ctx.sort_by_lora_id, "cpu")
# Prepare token lora indices tensor
token_lora_indices_tensor = make_token_lora_mapping(
total_tokens, ctx.batch_size, prompt_lora_indices_tensor,
seq_len_tensor, "cpu")
return BenchmarkTensors(input_tensor, lora_weights, output_tensor,
seq_len_tensor, seq_start_loc_tensor,
prompt_lora_indices_tensor,
token_lora_indices_tensor)
def sanity_check(self) -> None:
"""
Fails asserts when non-conformality is detected.
"""
num_tokens = self.input.shape[-2]
# check metadata tensors
assert torch.sum(self.seq_lens) == num_tokens
num_seqs = self.seq_lens.shape[0]
assert self.seq_start_loc.shape[0] == num_seqs
assert self.prompt_lora_mapping.shape[0] == num_seqs
assert self.token_lora_mapping.shape[0] == num_tokens
def to_device(self, device: str):
"""
Transfer tensors to device if the tensors aren't already on the device
"""
def to_device(tensor: torch.Tensor):
if tensor.device != device:
tensor = tensor.to(device=device)
return tensor
self.input = to_device(self.input)
self.output = to_device(self.output)
self.seq_lens = to_device(self.seq_lens)
self.seq_start_loc = to_device(self.seq_start_loc)
self.prompt_lora_mapping = to_device(self.prompt_lora_mapping)
self.token_lora_mapping = to_device(self.token_lora_mapping)
for i in range(len(self.lora_weights_lst)):
self.lora_weights_lst[i] = to_device(self.lora_weights_lst[i])
def metadata(self) -> Tuple[int, int, int]:
"""
Return num_seqs, num_tokens and max_seq_len
"""
num_seqs = self.seq_lens.shape[0]
num_tokens = self.token_lora_mapping.shape[0]
max_seq_len = torch.max(self.seq_lens).item()
num_slices = len(self.lora_weights_lst)
return num_seqs, num_tokens, max_seq_len, num_slices
def convert_to_sgmv_benchmark_tensors(self):
"""
For sgmv punica kernels, when consecutive sequences have the
same LoRA ID, we just merge them together.
This happens in punica.py::compute_metadata
"""
# Collapse seq_lens and seq_start_loc
_, seq_lens = torch.unique_consecutive(self.token_lora_mapping,
return_counts=True)
cum_result = torch.cumsum(seq_lens, dim=0)
seq_start_loc = torch.zeros_like(seq_lens)
seq_start_loc[1:].copy_(cum_result[:-1])
# Collapse prompt mapping
prompt_lora_mapping = torch.unique_consecutive(
self.prompt_lora_mapping)
assert torch.sum(seq_lens) == torch.sum(self.seq_lens), \
f"dont match - new {torch.sum(seq_lens)} vs {torch.sum(self.seq_lens)}"
self.prompt_lora_mapping = prompt_lora_mapping.to(
dtype=self.prompt_lora_mapping.dtype)
self.seq_lens = seq_lens.to(dtype=self.seq_lens.dtype)
self.seq_start_loc = seq_start_loc.to(dtype=self.seq_start_loc.dtype)
def as_sgmv_shrink_kwargs(self) -> Dict[str, Any]:
self.convert_to_sgmv_benchmark_tensors()
self.sanity_check()
self.to_device(self.input.device)
num_seqs, num_tokens, max_seq_len, num_slices = self.metadata()
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_tokens, hidden_size]
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
hidden_size = i_shape[1]
# Expected lora weight shape [num_loras, lora_rank, hidden_size]
assert len(lw_shape) == 3
assert lw_shape[2] == hidden_size
lora_rank = lw_shape[1]
# Expected output shape [num_slices, num_tokens, lora_rank]
assert len(o_shape) == 3
assert o_shape == (num_slices, num_tokens, lora_rank)
return {
'inputs': self.input,
'lora_a_weights': self.lora_weights_lst,
'output_tensor': self.output,
'b_seq_start_loc': self.seq_start_loc,
'seq_len_tensor': self.seq_lens,
'lora_indices_tensor': self.prompt_lora_mapping,
'batches': num_seqs,
'max_seq_length': max_seq_len,
'token_nums': num_tokens,
'scaling': 1.0,
}
def as_sgmv_expand_kwargs(self, add_inputs: bool) -> Dict[str, Any]:
self.convert_to_sgmv_benchmark_tensors()
self.sanity_check()
self.to_device(self.input.device)
num_seqs, num_tokens, max_seq_len, num_slices = self.metadata()
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape : [num_slices, num_tokens, lora_rank]
assert len(i_shape) == 3
assert i_shape[0] == num_slices
assert i_shape[1] == num_tokens
lora_rank = i_shape[2]
# Expected lora weight shape : [num_lora, hidden_size, lora_rank]
assert len(lw_shape) == 3
assert lw_shape[2] == lora_rank
hidden_size = lw_shape[1]
# Expected output shape : [num_tokens, hidden_size * num_slices]
assert len(o_shape) == 2
assert o_shape == (num_tokens, hidden_size * num_slices)
return {
'inputs': self.input,
'lora_b_weights': self.lora_weights_lst,
'output_tensor': self.output,
'b_seq_start_loc': self.seq_start_loc,
'seq_len_tensor': self.seq_lens,
'lora_indices_tensor': self.prompt_lora_mapping,
'batches': num_seqs,
'max_seq_length': max_seq_len,
'token_nums': num_tokens,
'offset_start': 0,
'add_inputs': add_inputs,
}
def as_bgmv_shrink_kwargs(self) -> Dict[str, Any]:
assert len(self.lora_weights_lst) == 1
self.to_device(self.input.device)
_, num_tokens, _, _ = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_tokens, hidden_size]
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
hidden_size = i_shape[1]
# Expected lora weight shape [num_loras, lora_rank, hidden_size]
assert len(lw_shape) == 3
assert lw_shape[2] == hidden_size
lora_rank = lw_shape[1]
# Expected output shape [num_tokens, lora_rank]
assert len(o_shape) == 2
assert o_shape == (num_tokens, lora_rank)
return {
'inputs': self.input,
'lora_a_weights': self.lora_weights_lst[0],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'scaling': 1.0
}
def as_bgmv_expand_kwargs(self, add_inputs: bool):
assert len(self.lora_weights_lst) == 1
self.to_device(self.input.device)
_, num_tokens, _, _ = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_tokens, lora_rank]
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
lora_rank = i_shape[1]
# Expected lora weight shape [num_loras, hidden_size, lora_rank]
assert len(lw_shape) == 3
assert lw_shape[2] == lora_rank
hidden_size = lw_shape[1]
# Expected output shape [num_tokens, hidden_size]
assert len(o_shape) == 2
assert o_shape == (num_tokens, hidden_size)
return {
'inputs': self.input,
'lora_b_weights': self.lora_weights_lst[0],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'add_inputs': add_inputs
}
def as_bgmv_expand_slice_kwargs(self, add_inputs: bool) -> Dict[str, Any]:
_, num_tokens, _, num_slices = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_slices, num_tokens, lora_rank]
assert len(i_shape) == 3
assert i_shape[0] == num_slices
assert i_shape[1] == num_tokens
lora_rank = i_shape[2]
# Expected lora weight shape [num_loras, hidden_size, lora_rank]
assert len(lw_shape) == 3
assert lw_shape[2] == lora_rank
hidden_size = lw_shape[1]
# Expected output shape [num_tokens, hidden_size * num_slices]
assert len(o_shape) == 2
assert o_shape == (num_tokens, hidden_size * num_slices)
self.to_device(self.input.device)
kwargs_list = []
for i in range(num_slices):
kwargs_list.append({
'inputs': self.input[i],
'lora_b_weights': self.lora_weights_lst[i],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'slice_offset': i * hidden_size,
'slice_size': hidden_size,
'add_inputs': add_inputs,
})
return {'kwargs_list': kwargs_list}
def bench_fn_kwargs(self,
op_type: OpType,
add_inputs: Optional[bool] = None) -> Dict[str, Any]:
if op_type.is_shrink_fn():
assert add_inputs is None
else:
assert add_inputs is not None
if op_type == OpType.SGMV_SHRINK:
return self.as_sgmv_shrink_kwargs()
if op_type == OpType.SGMV_EXPAND:
return self.as_sgmv_expand_kwargs(add_inputs)
if op_type == OpType.BGMV_SHRINK:
return self.as_bgmv_shrink_kwargs()
if op_type == OpType.BGMV_EXPAND:
return self.as_bgmv_expand_kwargs(add_inputs)
if op_type == OpType.BGMV_EXPAND_SLICE:
return self.as_bgmv_expand_slice_kwargs(add_inputs)
raise ValueError(f"Unrecognized optype {self}")
def test_correctness(self, op_type: OpType,
expand_fn_add_inputs: Optional[bool]) -> bool:
"""
Test correctness of op_type implementation against a grouped gemm
reference implementation.
"""
seq_lens_cpu = self.seq_lens.to(device="cpu")
prompt_lora_mapping_cpu = self.prompt_lora_mapping.to(device="cpu")
ref_output = self.output.clone()
self.output.zero_()
op_type.bench_fn()(
**self.bench_fn_kwargs(op_type, expand_fn_add_inputs))
op_type.run_ref_group_gemm(
ref_output,
self.input,
self.lora_weights_lst,
seq_lens_cpu=seq_lens_cpu,
prompt_lora_mapping_cpu=prompt_lora_mapping_cpu,
scaling=1.0,
add_inputs=expand_fn_add_inputs)
rtol, atol = {
torch.float16: (6e-2, 6e-2),
torch.bfloat16: (6e-2, 6e-2),
torch.float32: (1e-2, 1e-2),
}[self.output.dtype]
return torch.allclose(ref_output, self.output, rtol=rtol, atol=atol)
def bench_optype(ctx: BenchmarkContext,
arg_pool_size: int,
op_type: OpType,
cuda_graph_nops: Optional[int] = None,
expand_fn_add_inputs: Optional[bool] = None,
test_correctness: bool = False) -> TMeasurement:
assert arg_pool_size >= 1
if op_type.is_shrink_fn():
assert expand_fn_add_inputs is None
else:
assert expand_fn_add_inputs is not None
# BenchmarkContext -> BenchmarkTensors
bench_tensors : List[BenchmarkTensors] = \
[BenchmarkTensors.make(ctx, op_type) for _ in range(arg_pool_size)]
for bt in bench_tensors:
bt.sanity_check()
# Test correctness of our implementation.
if test_correctness:
assert all([
bt.test_correctness(op_type, expand_fn_add_inputs)
for bt in bench_tensors
])
# BenchmarkTensors -> Dict (kwargs)
kwargs_list = [
bt.bench_fn_kwargs(op_type, add_inputs=expand_fn_add_inputs)
for bt in bench_tensors
]
# Clear LoRA optimization hash-maps.
_LORA_A_PTR_DICT.clear()
_LORA_B_PTR_DICT.clear()
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are setup
for kwargs in kwargs_list:
op_type.bench_fn()(**kwargs)
torch.cuda.synchronize()
# Merge into a single kwargs and qualify arguments as ArgPool
kwargs = {k: ArgPool([]) for k in kwargs_list[0]}
for _kwargs in kwargs_list:
for k, v in _kwargs.items():
kwargs[k].values.append(v)
describe_args = (f"add_inputs={expand_fn_add_inputs}"
if expand_fn_add_inputs is not None else "")
description = (
f"{op_type.name}({describe_args}) ({bench_tensors[0].io_types()})")
cuda_graph_params = None
if cuda_graph_nops:
cuda_graph_params = CudaGraphBenchParams(cuda_graph_nops)
timer = None
with Bench(cuda_graph_params,
ctx.bench_label(), ctx.bench_sublabel(op_type), description,
op_type.bench_fn(), **kwargs) as bench:
timer = bench.run()
return timer
def bench_torch_mm(ctx: BenchmarkContext,
arg_pool_size: int,
op_type: OpType,
cuda_graph_nops: Optional[int] = None) -> TMeasurement:
"""
Benchmark basic torch.mm as a roofline.
When all the input tokens have the same LoRA ID, the LoRA kernels are just
a matmul. This torch.mm benchmark serves as a roofline for that case.
input op_type is used in determining the m, k, n dimensions for the matmul.
"""
batch_size, hidden_size, lora_rank, seq_length, dtype = (ctx.batch_size,
ctx.hidden_size,
ctx.lora_rank,
ctx.seq_length,
ctx.dtype)
m, k, n = op_type.mkn(batch_size, seq_length, hidden_size, lora_rank)
# For a fairer comparison.
n = n * ctx.num_slices
# Get matmul input and output tensors for A x B = C
As, Bs, Cs = [], [], []
for _ in range(arg_pool_size):
As.append(torch.rand((m, k), dtype=dtype).to("cuda"))
Bs.append(torch.rand((n, k), dtype=dtype).to("cuda").t())
Cs.append(torch.rand((m, n), dtype=dtype).to("cuda"))
# Make torch.mm kwargs
mm_kwargs = {'input': ArgPool(As), 'mat2': ArgPool(Bs), 'out': ArgPool(Cs)}
description = (
f"single-lora roofline using torch.mm ({dtype_to_str(dtype)}"
f"x{dtype_to_str(dtype)}"
f"=>{dtype_to_str(dtype)})")
cuda_graph_params = None
if cuda_graph_nops:
cuda_graph_params = CudaGraphBenchParams(cuda_graph_nops)
with Bench(cuda_graph_params, ctx.bench_label(),
ctx.bench_sublabel(op_type), description, torch.mm,
**mm_kwargs) as bench:
return bench.run()
# runner
def use_cuda_graph_recommendation() -> str:
return """
Triton kernels have a significant launch overhead with
launched directly via python. This overhead is more noticeable
for small the problem sizes. For these cases, it is recommended
to use the script with `--cuda-graph-nops N` to benchmark N
consecutive invocations of the benchmarking operations from
inside a CUDA Graph. Note that the returned measurement is for N
invocations of the operation.
"""
def print_timers(timers: List[TMeasurement],
args: Optional[argparse.Namespace] = None):
compare = TBenchmark.Compare(timers)
compare.print()
if args and args.cuda_graph_nops:
print(
f"Note : The timings reported above is for {args.cuda_graph_nops} "
"consecutive invocations of the benchmarking functions. "
f"Please divide by {args.cuda_graph_nops} for single invocation "
"timings.")
print("Note on Comparison with torch.mm : The torch.mm numbers are "
"benchmark numbers of a simple matmul emulating the single lora "
"case. It is provided as a roofline for comparing our LoRA Kernel "
"implementations. It is expected that the LoRA kernels will be "
"slower than torch.mm in cases where num_loras is big. But for "
"small num_loras the goal should be to match the torch.mm numbers.")
def run(args: argparse.Namespace, bench_ctxs: List[BenchmarkContext]):
if args.cuda_graph_nops is not None:
assert args.cuda_graph_nops > 0
print(f"Benchmarking {args.cuda_graph_nops} invocations inside a CUDA "
"Graph")
else:
print(f"CUDA Graphs not enabled.\n{use_cuda_graph_recommendation()}")
timers = []
for bench_ctx in bench_ctxs:
for seq_len in args.seq_lengths:
bench_ops: List[OpType] = []
if seq_len == 1:
# bench all decode ops
bench_ops = [op for op in args.op_types if op.is_decode_op()]
else:
# bench all prefill ops
bench_ops = [op for op in args.op_types if op.is_prefill_op()]
seq_len_timers = []
for bench_op in bench_ops:
for num_slices in bench_op.num_slices():
_ctx = bench_ctx.with_seq_length(seq_len).with_num_slices(
num_slices)
# Benchmark torch.mm as a roofline
seq_len_timers.append(
bench_torch_mm(_ctx, args.arg_pool_size, bench_op,
args.cuda_graph_nops))
# Benchmark bench_op
expand_fn_add_inputs = [
None
] if bench_op.is_shrink_fn() else args.expand_fn_add_inputs
for add_input_arg in expand_fn_add_inputs:
seq_len_timers.append(
bench_optype(_ctx, args.arg_pool_size, bench_op,
args.cuda_graph_nops, add_input_arg,
args.test_correctness))
print_timers(seq_len_timers)
timers.extend(seq_len_timers)
# Result stdout dump
print("== All Results ====")
print_timers(timers, args)
if args.output_directory:
# Result file dump
od = Path(args.output_directory)
if not od.exists():
od.mkdir()
timestamp = int(time.time())
pkl_file = od / f"lora_bench-{timestamp}.pkl"
print(f"Writing benchmarks to {pkl_file}")
with open(pkl_file, "wb") as f:
pickle.dump(timers, f)
def as_benchmark_contexts(hidden_sizes: List[int], lora_ranks: List[int],
args: argparse.Namespace) -> List[BenchmarkContext]:
ctxs: List[BenchmarkContext] = []
for batch_size, hidden_size, lora_rank, num_loras, sort_by_lora_id in product( # noqa
args.batch_sizes, list(hidden_sizes), lora_ranks, args.num_loras,
args.sort_by_lora_id):
ctxs.append(
BenchmarkContext(
batch_size=batch_size,
hidden_size=hidden_size,
lora_rank=lora_rank,
num_loras=num_loras,
num_active_loras=args.num_active_loras
if args.num_active_loras else num_loras,
# To be filled based on the OpType to benchmark
seq_length=None,
sort_by_lora_id=sort_by_lora_id,
dtype=args.dtype,
# To be filled based on the OpType to benchmark
num_slices=None))
return ctxs
def run_list_bench(args: argparse.Namespace):
print(args)
print("List bench :\n"
f" Hidden Sizes {args.hidden_sizes}"
f" LoRA Ranks {args.lora_ranks}")
# Get all benchmarking contexts
bench_contexts: List[BenchmarkContext] = as_benchmark_contexts(
hidden_sizes=args.hidden_sizes, lora_ranks=args.lora_ranks, args=args)
run(args, bench_contexts)
def run_range_bench(args: argparse.Namespace):
print(args)
hidden_sizes = list(
range(args.hidden_sizes_start, args.hidden_sizes_end + 1,
args.hidden_sizes_increment))
lora_ranks = list(
range(args.lora_ranks_start, args.lora_ranks_end + 1,
args.lora_ranks_increment))
print("Range bench :\n"
f" Hidden Sizes {hidden_sizes}"
f" LoRA Ranks {lora_ranks}")
# Get all benchmarking contexts
bench_contexts: List[BenchmarkContext] = as_benchmark_contexts(
hidden_sizes=hidden_sizes, lora_ranks=lora_ranks, args=args)
run(args, bench_contexts)
def run_model_bench(args: argparse.Namespace):
print(args)
def hidden_sizes_from_model(model: str, tp_size: int) -> set[int]:
hidden_sizes = set()
for KN, tp_split_dim in WEIGHT_SHAPES[model]:
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
hidden_sizes.add(KN[1])
return hidden_sizes
# Get all hidden sizes
hidden_sizes: set[int] = set()
for model_name, tp_size in product(args.models, args.tp_sizes):
hidden_sizes = hidden_sizes.union(
hidden_sizes_from_model(model_name, tp_size))
print("Model bench :\n"
f" Hidden Sizes {hidden_sizes}"
f" LoRA Ranks {args.lora_ranks}")
# Get all benchmarking contexts
bench_contexts: List[BenchmarkContext] = as_benchmark_contexts(
hidden_sizes=hidden_sizes, lora_ranks=args.lora_ranks, args=args)
run(args, bench_contexts)
if __name__ == '__main__':
def to_torch_dtype(dt):
if dt == "torch.float16":
return torch.float16
if dt == "torch.bfloat16":
return torch.bfloat16
raise ValueError("unsupported dtype")
def get_bool(s: str) -> bool:
return s.lower() in ['true', '1']
def add_common_command_args(p: argparse.ArgumentParser):
p.add_argument(
"--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['torch.float16', 'torch.bfloat16']")
p.add_argument(
"--arg-pool-size",
type=int,
default=32,
help="Run profiles with a pool of input/output/meta tensors instead"
"of simply reusing the same tensors for all runs. A bigger arg-pool"
"mitigates hardware caching effects during benchmarking.")
p.add_argument(
"--cuda-graph-nops",
type=int,
help=("when set profiling is done using cudagraph, "
"with the given number of operations in a graph."
"Note that the measurement returned is the time "
"taken for N consecutive executions of the benchmarking "
"functions, where N is the value of this argument."))
p.add_argument("--num-loras",
nargs="+",
type=int,
default=DEFAULT_NUM_LORAS)
p.add_argument("--num-active-loras",
type=int,
default=None,
help="Active LoRAs. When None, all LoRAs are active")
p.add_argument("--sort-by-lora-id",
nargs="+",
type=get_bool,
default=DEFAULT_SORT_BY_LORA_IDS)
p.add_argument("--op-types",
nargs="+",
type=OpType.from_str,
default=list(OpType))
p.add_argument('--seq-lengths',
nargs="+",
type=int,
default=DEFAULT_SEQ_LENGTHS)
p.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
p.add_argument("--expand-fn-add-inputs",
nargs="+",
type=get_bool,
default=DEFAULT_EXPAND_FN_ADD_INPUTS)
p.add_argument(
'-o',
'--output-directory',
type=str,
help=("Output directory to store a the list of benchmarking"
"TMeasurement objects as a pickle file"))
p.add_argument(
"--test-correctness",
action='store_true',
help=("When enabled, the benchmarking functions are tested"
"for correctness before the actual benchmarking"))
parser = FlexibleArgumentParser(
description=f"""
Benchmark LoRA kernels:
{use_cuda_graph_recommendation()}
list_bench example:
python3 benchmarks/kernels/benchmark_lora.py list_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --hidden-sizes 2048 --lora-ranks 16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
model_bench example:
python3 benchmarks/kernels/benchmark_lora.py model_bench --models meta-llama/Llama-3-8b --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --lora-ranks 16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
range_bench example:
python3 benchmarks/kernels/benchmark_lora.py range_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32 --hidden-sizes-start 1024 --hidden-sizes-end 4096 --hidden-sizes-increment 1024 --lora-ranks-start 8 --lora-ranks-end 24 --lora-ranks-increment 8
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter)
subparsers = parser.add_subparsers(dest="cmd", required=True)
list_parser = subparsers.add_parser("list_bench")
list_parser.add_argument("--hidden-sizes",
nargs="+",
type=int,
default=DEFAULT_HIDDEN_SIZES)
list_parser.add_argument("--lora-ranks",
nargs="+",
type=int,
default=DEFAULT_LORA_RANKS)
add_common_command_args(list_parser)
list_parser.set_defaults(func=run_list_bench)
range_parser = subparsers.add_parser("range_bench")
range_parser.add_argument("--hidden-sizes-start", type=int, required=True)
range_parser.add_argument("--hidden-sizes-end", type=int, required=True)
range_parser.add_argument("--hidden-sizes-increment",
type=int,
required=True)
range_parser.add_argument("--lora-ranks-start", type=int, required=True)
range_parser.add_argument("--lora-ranks-end", type=int, required=True)
range_parser.add_argument("--lora-ranks-increment",
type=int,
required=True)
add_common_command_args(range_parser)
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument("--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys())
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--lora-ranks",
nargs="+",
type=int,
default=DEFAULT_LORA_RANKS)
add_common_command_args(model_parser)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()
args.func(args)