2025-02-02 14:58:18 -05:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
2024-09-24 21:50:50 -05:00
|
|
|
"""Benchmark offline prioritization."""
|
|
|
|
import argparse
|
2024-10-22 17:40:38 -05:00
|
|
|
import dataclasses
|
2024-09-24 21:50:50 -05:00
|
|
|
import json
|
|
|
|
import random
|
|
|
|
import time
|
|
|
|
from typing import List, Optional, Tuple
|
|
|
|
|
|
|
|
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
|
|
|
|
2024-10-22 17:40:38 -05:00
|
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
|
|
from vllm.utils import FlexibleArgumentParser
|
2024-09-24 21:50:50 -05:00
|
|
|
|
|
|
|
|
|
|
|
def sample_requests(
|
|
|
|
dataset_path: str,
|
|
|
|
num_requests: int,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
fixed_output_len: Optional[int],
|
|
|
|
) -> List[Tuple[str, int, int]]:
|
|
|
|
if fixed_output_len is not None and fixed_output_len < 4:
|
|
|
|
raise ValueError("output_len too small")
|
|
|
|
|
|
|
|
# Load the dataset.
|
|
|
|
with open(dataset_path) as f:
|
|
|
|
dataset = json.load(f)
|
|
|
|
# Filter out the conversations with less than 2 turns.
|
|
|
|
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
|
|
|
# Only keep the first two turns of each conversation.
|
|
|
|
dataset = [(data["conversations"][0]["value"],
|
|
|
|
data["conversations"][1]["value"]) for data in dataset]
|
|
|
|
|
|
|
|
# Shuffle the dataset.
|
|
|
|
random.shuffle(dataset)
|
|
|
|
|
|
|
|
# Filter out sequences that are too long or too short
|
|
|
|
filtered_dataset: List[Tuple[str, int, int]] = []
|
|
|
|
for i in range(len(dataset)):
|
|
|
|
if len(filtered_dataset) == num_requests:
|
|
|
|
break
|
|
|
|
|
|
|
|
# Tokenize the prompts and completions.
|
|
|
|
prompt = dataset[i][0]
|
|
|
|
prompt_token_ids = tokenizer(prompt).input_ids
|
|
|
|
completion = dataset[i][1]
|
|
|
|
completion_token_ids = tokenizer(completion).input_ids
|
|
|
|
prompt_len = len(prompt_token_ids)
|
|
|
|
output_len = len(completion_token_ids
|
|
|
|
) if fixed_output_len is None else fixed_output_len
|
|
|
|
if prompt_len < 4 or output_len < 4:
|
|
|
|
# Prune too short sequences.
|
|
|
|
continue
|
|
|
|
if prompt_len > 1024 or prompt_len + output_len > 2048:
|
|
|
|
# Prune too long sequences.
|
|
|
|
continue
|
|
|
|
|
|
|
|
#Select a equi-probable random priority
|
|
|
|
priority = 0 if random.random() < 0.5 else 1
|
|
|
|
|
|
|
|
filtered_dataset.append((prompt, prompt_len, output_len, priority))
|
|
|
|
|
|
|
|
return filtered_dataset
|
|
|
|
|
|
|
|
|
|
|
|
def run_vllm(
|
|
|
|
requests: List[Tuple[str, int, int]],
|
|
|
|
n: int,
|
2024-10-22 17:40:38 -05:00
|
|
|
engine_args: EngineArgs,
|
2024-09-24 21:50:50 -05:00
|
|
|
) -> float:
|
|
|
|
from vllm import LLM, SamplingParams
|
2024-10-22 17:40:38 -05:00
|
|
|
llm = LLM(**dataclasses.asdict(engine_args))
|
2024-09-24 21:50:50 -05:00
|
|
|
|
|
|
|
# Add the requests to the engine.
|
|
|
|
prompts = []
|
|
|
|
sampling_params = []
|
|
|
|
priority = []
|
|
|
|
for prompt, _, output_len, _priority in requests:
|
|
|
|
prompts.append(prompt)
|
|
|
|
priority.append(_priority)
|
|
|
|
sampling_params.append(
|
|
|
|
SamplingParams(
|
|
|
|
n=n,
|
2024-10-06 22:47:04 -07:00
|
|
|
temperature=1.0,
|
2024-09-24 21:50:50 -05:00
|
|
|
top_p=1.0,
|
|
|
|
ignore_eos=True,
|
|
|
|
max_tokens=output_len,
|
|
|
|
))
|
|
|
|
|
|
|
|
start = time.perf_counter()
|
|
|
|
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True)
|
|
|
|
end = time.perf_counter()
|
|
|
|
return end - start
|
|
|
|
|
|
|
|
|
|
|
|
def main(args: argparse.Namespace):
|
|
|
|
print(args)
|
|
|
|
random.seed(args.seed)
|
|
|
|
|
|
|
|
# Sample the requests.
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
|
|
|
if args.dataset is None:
|
|
|
|
# Synthesize a prompt with the given input length.
|
|
|
|
prompt = "hi" * (args.input_len - 1)
|
|
|
|
requests = [(prompt, args.input_len, args.output_len)
|
|
|
|
for _ in range(args.num_prompts)]
|
|
|
|
else:
|
|
|
|
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
|
|
|
|
args.output_len)
|
|
|
|
|
|
|
|
if args.backend == "vllm":
|
2024-10-22 17:40:38 -05:00
|
|
|
elapsed_time = run_vllm(requests, args.n,
|
|
|
|
EngineArgs.from_cli_args(args))
|
2024-09-24 21:50:50 -05:00
|
|
|
else:
|
|
|
|
raise ValueError(f"Unknown backend: {args.backend}")
|
|
|
|
total_num_tokens = sum(prompt_len + output_len
|
|
|
|
for _, prompt_len, output_len, priority in requests)
|
|
|
|
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
|
|
|
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
|
|
|
|
|
|
|
|
# Output JSON results if specified
|
|
|
|
if args.output_json:
|
|
|
|
results = {
|
|
|
|
"elapsed_time": elapsed_time,
|
|
|
|
"num_requests": len(requests),
|
|
|
|
"total_num_tokens": total_num_tokens,
|
|
|
|
"requests_per_second": len(requests) / elapsed_time,
|
|
|
|
"tokens_per_second": total_num_tokens / elapsed_time,
|
|
|
|
}
|
|
|
|
with open(args.output_json, "w") as f:
|
|
|
|
json.dump(results, f, indent=4)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2024-10-22 17:40:38 -05:00
|
|
|
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
|
2024-09-24 21:50:50 -05:00
|
|
|
parser.add_argument("--backend",
|
|
|
|
type=str,
|
|
|
|
choices=["vllm", "hf", "mii"],
|
|
|
|
default="vllm")
|
|
|
|
parser.add_argument("--dataset",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="Path to the dataset.")
|
|
|
|
parser.add_argument("--input-len",
|
|
|
|
type=int,
|
|
|
|
default=None,
|
|
|
|
help="Input prompt length for each request")
|
|
|
|
parser.add_argument("--output-len",
|
|
|
|
type=int,
|
|
|
|
default=None,
|
|
|
|
help="Output length for each request. Overrides the "
|
|
|
|
"output length from the dataset.")
|
|
|
|
parser.add_argument("--n",
|
|
|
|
type=int,
|
|
|
|
default=1,
|
|
|
|
help="Number of generated sequences per prompt.")
|
|
|
|
parser.add_argument("--num-prompts",
|
|
|
|
type=int,
|
|
|
|
default=200,
|
|
|
|
help="Number of prompts to process.")
|
|
|
|
parser.add_argument(
|
|
|
|
'--output-json',
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help='Path to save the throughput results in JSON format.')
|
|
|
|
|
2024-10-22 17:40:38 -05:00
|
|
|
parser = EngineArgs.add_cli_args(parser)
|
2024-09-24 21:50:50 -05:00
|
|
|
args = parser.parse_args()
|
|
|
|
if args.tokenizer is None:
|
|
|
|
args.tokenizer = args.model
|
|
|
|
if args.dataset is None:
|
|
|
|
assert args.input_len is not None
|
|
|
|
assert args.output_len is not None
|
|
|
|
else:
|
|
|
|
assert args.input_len is None
|
|
|
|
|
|
|
|
main(args)
|