vllm/cacheflow/server/arg_utils.py

131 lines
6.2 KiB
Python
Raw Normal View History

2023-05-20 13:06:59 -07:00
import argparse
import dataclasses
from dataclasses import dataclass
from typing import Optional, Tuple
2023-05-20 13:06:59 -07:00
from cacheflow.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
@dataclass
class ServerArgs:
model: str
download_dir: Optional[str] = None
use_np_weights: bool = False
use_dummy_weights: bool = False
2023-06-07 00:40:21 -07:00
dtype: str = "auto"
seed: int = 0
worker_use_ray: bool = False
pipeline_parallel_size: int = 1
tensor_parallel_size: int = 1
block_size: int = 16
swap_space: int = 4 # GiB
gpu_memory_utilization: float = 0.95
max_num_batched_tokens: int = 2560
max_num_seqs: int = 256
disable_log_stats: bool = False
2023-05-20 13:06:59 -07:00
def __post_init__(self):
self.max_num_seqs = min(self.max_num_seqs, self.max_num_batched_tokens)
@staticmethod
def add_cli_args(
parser: argparse.ArgumentParser,
) -> argparse.ArgumentParser:
"""Shared CLI arguments for CacheFlow servers."""
# Model arguments
parser.add_argument('--model', type=str, default='facebook/opt-125m',
help='name or path of the huggingface model to use')
parser.add_argument('--download-dir', type=str,
default=ServerArgs.download_dir,
help='directory to download and load the weights, '
'default to the default cache dir of '
'huggingface')
parser.add_argument('--use-np-weights', action='store_true',
help='save a numpy copy of model weights for '
'faster loading. This can increase the disk '
'usage by up to 2x.')
parser.add_argument('--use-dummy-weights', action='store_true',
help='use dummy values for model weights')
# TODO(woosuk): Support FP32.
parser.add_argument('--dtype', type=str, default=ServerArgs.dtype,
2023-06-07 00:40:21 -07:00
choices=['auto', 'half', 'bfloat16', 'float'],
help='data type for model weights and activations. '
2023-06-07 00:40:21 -07:00
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
# Parallel arguments
parser.add_argument('--worker-use-ray', action='store_true',
help='use Ray for distributed serving, will be '
'automatically set when using more than 1 GPU')
parser.add_argument('--pipeline-parallel-size', '-pp', type=int,
default=ServerArgs.pipeline_parallel_size,
help='number of pipeline stages')
parser.add_argument('--tensor-parallel-size', '-tp', type=int,
default=ServerArgs.tensor_parallel_size,
help='number of tensor parallel replicas')
# KV cache arguments
parser.add_argument('--block-size', type=int,
default=ServerArgs.block_size,
2023-06-07 00:40:21 -07:00
choices=[8, 16, 32],
help='token block size')
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
parser.add_argument('--seed', type=int, default=ServerArgs.seed,
help='random seed')
parser.add_argument('--swap-space', type=int,
default=ServerArgs.swap_space,
help='CPU swap space size (GiB) per GPU')
parser.add_argument('--gpu-memory-utilization', type=float,
default=ServerArgs.gpu_memory_utilization,
help='the percentage of GPU memory to be used for'
'the model executor')
parser.add_argument('--max-num-batched-tokens', type=int,
default=ServerArgs.max_num_batched_tokens,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--max-num-seqs', type=int,
default=ServerArgs.max_num_seqs,
help='maximum number of sequences per iteration')
parser.add_argument('--disable-log-stats', action='store_true',
help='disable logging statistics')
return parser
@classmethod
def from_cli_args(cls, args: argparse.Namespace) -> "ServerArgs":
# Get the list of attributes of this dataclass.
attrs = [attr.name for attr in dataclasses.fields(cls)]
# Set the attributes from the parsed arguments.
server_args = cls(**{attr: getattr(args, attr) for attr in attrs})
return server_args
def create_server_configs(
self,
) -> Tuple[ModelConfig, CacheConfig, ParallelConfig, SchedulerConfig]:
# Initialize the configs.
model_config = ModelConfig(
self.model, self.download_dir, self.use_np_weights,
self.use_dummy_weights, self.dtype, self.seed)
cache_config = CacheConfig(self.block_size, self.gpu_memory_utilization,
self.swap_space)
parallel_config = ParallelConfig(self.pipeline_parallel_size,
self.tensor_parallel_size,
self.worker_use_ray)
scheduler_config = SchedulerConfig(self.max_num_batched_tokens,
self.max_num_seqs)
return model_config, cache_config, parallel_config, scheduler_config
@dataclass
class AsyncServerArgs(ServerArgs):
server_use_ray: bool = False
@staticmethod
def add_cli_args(
parser: argparse.ArgumentParser,
) -> argparse.ArgumentParser:
parser = ServerArgs.add_cli_args(parser)
parser.add_argument('--server-use-ray', action='store_true',
help='use Ray to start the LLM server in a '
'separate process as the web server process.')
return parser