325 lines
12 KiB
Python
325 lines
12 KiB
Python
![]() |
import pytest
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from einops import rearrange, repeat
|
||
|
|
||
|
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
|
||
|
selective_scan_fn, selective_state_update)
|
||
|
|
||
|
|
||
|
def selective_state_update_ref(state,
|
||
|
x,
|
||
|
dt,
|
||
|
A,
|
||
|
B,
|
||
|
C,
|
||
|
D=None,
|
||
|
z=None,
|
||
|
dt_bias=None,
|
||
|
dt_softplus=False):
|
||
|
"""
|
||
|
Argument:
|
||
|
state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
|
||
|
x: (batch, dim) or (batch, nheads, dim)
|
||
|
dt: (batch, dim) or (batch, nheads, dim)
|
||
|
A: (dim, dstate) or (nheads, dim, dstate)
|
||
|
B: (batch, dstate) or (batch, ngroups, dstate)
|
||
|
C: (batch, dstate) or (batch, ngroups, dstate)
|
||
|
D: (dim,) or (nheads, dim)
|
||
|
z: (batch, dim) or (batch, nheads, dim)
|
||
|
dt_bias: (dim,) or (nheads, dim)
|
||
|
Return:
|
||
|
out: (batch, dim) or (batch, nheads, dim)
|
||
|
"""
|
||
|
has_heads = state.dim() > 3
|
||
|
if state.dim() == 3:
|
||
|
state = state.unsqueeze(1)
|
||
|
if x.dim() == 2:
|
||
|
x = x.unsqueeze(1)
|
||
|
if dt.dim() == 2:
|
||
|
dt = dt.unsqueeze(1)
|
||
|
if A.dim() == 2:
|
||
|
A = A.unsqueeze(0)
|
||
|
if B.dim() == 2:
|
||
|
B = B.unsqueeze(1)
|
||
|
if C.dim() == 2:
|
||
|
C = C.unsqueeze(1)
|
||
|
if D is not None and D.dim() == 1:
|
||
|
D = D.unsqueeze(0)
|
||
|
if z is not None and z.dim() == 2:
|
||
|
z = z.unsqueeze(1)
|
||
|
if dt_bias is not None and dt_bias.dim() == 1:
|
||
|
dt_bias = dt_bias.unsqueeze(0)
|
||
|
batch, nheads, dim, dstate = state.shape
|
||
|
assert x.shape == (batch, nheads, dim)
|
||
|
assert dt.shape == x.shape
|
||
|
assert A.shape == (nheads, dim, dstate)
|
||
|
ngroups = B.shape[1]
|
||
|
assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
|
||
|
assert B.shape == (batch, ngroups, dstate)
|
||
|
assert C.shape == B.shape
|
||
|
if D is not None:
|
||
|
assert D.shape == (nheads, dim)
|
||
|
if z is not None:
|
||
|
assert z.shape == x.shape
|
||
|
if dt_bias is not None:
|
||
|
assert dt_bias.shape == (nheads, dim)
|
||
|
dt = dt + dt_bias
|
||
|
dt = F.softplus(dt) if dt_softplus else dt
|
||
|
dA = torch.exp(rearrange(dt, "b h d -> b h d 1") *
|
||
|
A) # (batch, nheads, dim, dstate)
|
||
|
B = repeat(B, "b g n -> b (g h) n",
|
||
|
h=nheads // ngroups) # (batch, nheads, dstate)
|
||
|
C = repeat(C, "b g n -> b (g h) n",
|
||
|
h=nheads // ngroups) # (batch, nheads, dstate)
|
||
|
dB = rearrange(dt, "b h d -> b h d 1") * rearrange(
|
||
|
B, "b h n -> b h 1 n") # (batch, nheads, dim, dstate)
|
||
|
state.copy_(state * dA +
|
||
|
dB * rearrange(x, "b h d -> b h d 1")) # (batch, dim, dstate
|
||
|
out = torch.einsum("bhdn,bhn->bhd", state.to(C.dtype), C)
|
||
|
if D is not None:
|
||
|
out += (x * D).to(out.dtype)
|
||
|
out = (out if z is None else out * F.silu(z)).to(x.dtype)
|
||
|
if not has_heads:
|
||
|
out = out.squeeze(1)
|
||
|
return out
|
||
|
|
||
|
|
||
|
def selective_scan_ref(u,
|
||
|
delta,
|
||
|
A,
|
||
|
B,
|
||
|
C,
|
||
|
D=None,
|
||
|
z=None,
|
||
|
delta_bias=None,
|
||
|
delta_softplus=False,
|
||
|
return_last_state=False,
|
||
|
position_indices=None,
|
||
|
prev_state=None):
|
||
|
"""
|
||
|
u: r(B D L)
|
||
|
delta: r(B D L)
|
||
|
A: c(D N) or r(D N)
|
||
|
B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
|
||
|
C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
|
||
|
D: r(D)
|
||
|
z: r(B D L)
|
||
|
delta_bias: r(D), fp32
|
||
|
prev_state: r(B D N), fp32
|
||
|
|
||
|
out: r(B D L)
|
||
|
last_state (optional): r(B D dstate) or c(B D dstate)
|
||
|
"""
|
||
|
dtype_in = u.dtype
|
||
|
u = u.float()
|
||
|
delta = delta.float()
|
||
|
if delta_bias is not None:
|
||
|
delta = delta + delta_bias[..., None].float()
|
||
|
if delta_softplus:
|
||
|
delta = F.softplus(delta)
|
||
|
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
|
||
|
is_variable_B = B.dim() >= 3
|
||
|
is_variable_C = C.dim() >= 3
|
||
|
B = B.float()
|
||
|
C = C.float()
|
||
|
x = A.new_zeros((batch, dim, dstate)) if prev_state is None else prev_state
|
||
|
ys = []
|
||
|
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
|
||
|
if not is_variable_B:
|
||
|
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
|
||
|
else:
|
||
|
if B.dim() == 3:
|
||
|
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
|
||
|
else:
|
||
|
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
|
||
|
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
|
||
|
if is_variable_C and C.dim() == 4:
|
||
|
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
|
||
|
last_state = None
|
||
|
for i in range(u.shape[2]):
|
||
|
if position_indices is not None and position_indices[0, i] == 0:
|
||
|
x = deltaB_u[:, :, i]
|
||
|
else:
|
||
|
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
|
||
|
if not is_variable_C:
|
||
|
y = torch.einsum('bdn,dn->bd', x, C)
|
||
|
else:
|
||
|
if C.dim() == 3:
|
||
|
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
|
||
|
else:
|
||
|
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
|
||
|
if i == u.shape[2] - 1:
|
||
|
last_state = x
|
||
|
ys.append(y)
|
||
|
y = torch.stack(ys, dim=2) # (batch dim L)
|
||
|
out = y if D is None else y + u * rearrange(D, "d -> d 1")
|
||
|
if z is not None:
|
||
|
out = out * F.silu(z)
|
||
|
out = out.to(dtype=dtype_in)
|
||
|
return out if not return_last_state else (out, last_state)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('wtype', [torch.float32])
|
||
|
@pytest.mark.parametrize('itype', [torch.float32])
|
||
|
@pytest.mark.parametrize('seqlen', [128, 256, 512, 1024, 2048, 4096])
|
||
|
@pytest.mark.parametrize("return_last_state", [True])
|
||
|
@pytest.mark.parametrize('has_delta_bias', [True])
|
||
|
@pytest.mark.parametrize('delta_softplus', [True])
|
||
|
@pytest.mark.parametrize('has_z', [True])
|
||
|
@pytest.mark.parametrize('has_D', [True])
|
||
|
@pytest.mark.parametrize("varBC_groups", [1, 2])
|
||
|
@pytest.mark.parametrize("is_variable_C", [True])
|
||
|
@pytest.mark.parametrize("is_variable_B", [True])
|
||
|
@pytest.mark.parametrize("scan_chunks", [1, 2, 3])
|
||
|
def test_selective_scan(is_variable_B, is_variable_C, varBC_groups, has_D,
|
||
|
has_z, has_delta_bias, delta_softplus,
|
||
|
return_last_state, seqlen, itype, wtype, scan_chunks):
|
||
|
if varBC_groups > 1 and (not is_variable_B or not is_variable_C):
|
||
|
pytest.skip() # This config is not applicable
|
||
|
device = 'cuda'
|
||
|
rtol, atol = (6e-4, 2e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
||
|
if itype == torch.bfloat16:
|
||
|
rtol, atol = 3e-2, 5e-2
|
||
|
rtolw, atolw = (1e-3, 1e-3)
|
||
|
if has_z: # If we have z, the errors on the weights seem higher
|
||
|
rtolw = max(rtolw, rtol)
|
||
|
atolw = max(atolw, atol)
|
||
|
# set seed
|
||
|
torch.random.manual_seed(0)
|
||
|
batch_size = 2
|
||
|
dim = 4
|
||
|
dstate = 8
|
||
|
A = (-0.5 * torch.rand(dim, dstate, device=device, dtype=wtype))
|
||
|
if not is_variable_B:
|
||
|
B_shape = [dim, dstate]
|
||
|
elif varBC_groups == 1:
|
||
|
B_shape = [batch_size, dstate, seqlen]
|
||
|
else:
|
||
|
B_shape = [batch_size, varBC_groups, dstate, seqlen]
|
||
|
B = torch.randn(B_shape,
|
||
|
device=device,
|
||
|
dtype=wtype if not is_variable_B else itype)
|
||
|
if not is_variable_C:
|
||
|
C_shape = [dim, dstate]
|
||
|
elif varBC_groups == 1:
|
||
|
C_shape = [batch_size, dstate, seqlen]
|
||
|
else:
|
||
|
C_shape = [batch_size, varBC_groups, dstate, seqlen]
|
||
|
C = torch.randn(C_shape,
|
||
|
device=device,
|
||
|
dtype=wtype if not is_variable_C else itype)
|
||
|
D = torch.randn(dim, device=device, dtype=torch.float32) if has_D else None
|
||
|
z = torch.randn(batch_size, dim, seqlen, device=device,
|
||
|
dtype=itype) if has_z else None
|
||
|
delta_bias = (0.5 * torch.rand(dim, device=device, dtype=torch.float32)
|
||
|
) if has_delta_bias else None
|
||
|
u = torch.randn(batch_size, dim, seqlen, device=device, dtype=itype)
|
||
|
delta = (0.5 *
|
||
|
torch.rand(batch_size, dim, seqlen, device=device, dtype=itype))
|
||
|
state = None
|
||
|
state_ref = None
|
||
|
out = None
|
||
|
out_ref = None
|
||
|
outs = []
|
||
|
for c in range(scan_chunks):
|
||
|
chunked_prompt_len = seqlen // scan_chunks
|
||
|
chunk_start = chunked_prompt_len * c
|
||
|
chunk_end = chunked_prompt_len * (c + 1)
|
||
|
if c == scan_chunks - 1:
|
||
|
chunk_end = seqlen
|
||
|
_B = B
|
||
|
if is_variable_B:
|
||
|
_B = B[..., chunk_start:chunk_end]
|
||
|
_C = C
|
||
|
if is_variable_B:
|
||
|
_C = C[..., chunk_start:chunk_end]
|
||
|
_z = z
|
||
|
if has_z:
|
||
|
assert z is not None
|
||
|
_z = z[..., chunk_start:chunk_end]
|
||
|
out, *rest = selective_scan_fn(u[..., chunk_start:chunk_end],
|
||
|
delta[..., chunk_start:chunk_end],
|
||
|
A,
|
||
|
_B,
|
||
|
_C,
|
||
|
D,
|
||
|
z=_z,
|
||
|
delta_bias=delta_bias,
|
||
|
delta_softplus=delta_softplus,
|
||
|
return_last_state=return_last_state,
|
||
|
prev_state=state if c > 0 else None)
|
||
|
outs.append(out)
|
||
|
if return_last_state:
|
||
|
state = rest[0]
|
||
|
if len(outs) > 1:
|
||
|
out = torch.cat(outs, dim=-1)
|
||
|
out_ref, *rest = selective_scan_ref(u,
|
||
|
delta,
|
||
|
A,
|
||
|
B,
|
||
|
C,
|
||
|
D,
|
||
|
z=z,
|
||
|
delta_bias=delta_bias,
|
||
|
delta_softplus=delta_softplus,
|
||
|
return_last_state=return_last_state)
|
||
|
if return_last_state:
|
||
|
state_ref = rest[0]
|
||
|
|
||
|
assert out is not None and out_ref is not None
|
||
|
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
||
|
if return_last_state:
|
||
|
assert state is not None and state_ref is not None
|
||
|
assert torch.allclose(state, state_ref, rtol=rtol, atol=atol)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("itype",
|
||
|
[torch.float32, torch.float16, torch.bfloat16])
|
||
|
@pytest.mark.parametrize("has_z", [False, True])
|
||
|
@pytest.mark.parametrize("dstate", [16, 32, 64])
|
||
|
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
|
||
|
def test_selective_state_update(dim, dstate, has_z, itype):
|
||
|
device = "cuda"
|
||
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (5e-3, 1e-2)
|
||
|
if itype == torch.bfloat16:
|
||
|
rtol, atol = 1e-2, 5e-2
|
||
|
if torch.version.hip:
|
||
|
atol *= 2
|
||
|
# set seed
|
||
|
torch.random.manual_seed(0)
|
||
|
batch_size = 1
|
||
|
state = torch.randn(batch_size, dim, dstate, dtype=itype, device=device)
|
||
|
x = torch.randn(batch_size, dim, device=device, dtype=itype)
|
||
|
dt = torch.randn(batch_size, dim, device=device, dtype=itype)
|
||
|
dt_bias = torch.rand(dim, device=device) - 4.0
|
||
|
A = -torch.rand(dim, dstate, device=device) - 1.0
|
||
|
B = torch.randn(batch_size, dstate, device=device)
|
||
|
C = torch.randn(batch_size, dstate, device=device)
|
||
|
D = torch.randn(dim, device=device)
|
||
|
z = torch.randn_like(x) if has_z else None
|
||
|
state_ref = state.detach().clone()
|
||
|
out = selective_state_update(state,
|
||
|
x,
|
||
|
dt,
|
||
|
A,
|
||
|
B,
|
||
|
C,
|
||
|
D=D,
|
||
|
z=z,
|
||
|
dt_bias=dt_bias,
|
||
|
dt_softplus=True)
|
||
|
out_ref = selective_state_update_ref(state_ref,
|
||
|
x,
|
||
|
dt,
|
||
|
A,
|
||
|
B,
|
||
|
C,
|
||
|
D=D,
|
||
|
z=z,
|
||
|
dt_bias=dt_bias,
|
||
|
dt_softplus=True)
|
||
|
|
||
|
assert torch.allclose(state, state_ref, rtol=rtol, atol=atol)
|
||
|
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|