2024-08-20 23:10:20 +08:00
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from transformers import AutoConfig, AutoModel, CLIPImageProcessor
|
|
|
|
|
|
|
|
from ..conftest import _ImageAssets, cleanup
|
|
|
|
|
|
|
|
pytestmark = pytest.mark.vlm
|
|
|
|
|
|
|
|
# we use snapshot_download to prevent conflicts between
|
|
|
|
# dynamic_module and trust_remote_code for hf_runner
|
|
|
|
DOWNLOAD_PATTERN = ["*.json", "*.py", "*.safetensors", "*.txt", "*.model"]
|
|
|
|
models = [
|
|
|
|
snapshot_download("OpenGVLab/InternViT-300M-448px",
|
|
|
|
allow_patterns=DOWNLOAD_PATTERN),
|
|
|
|
snapshot_download("OpenGVLab/InternViT-6B-448px-V1-5",
|
|
|
|
allow_patterns=DOWNLOAD_PATTERN),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def run_intern_vit_test(
|
|
|
|
image_assets: _ImageAssets,
|
|
|
|
model: str,
|
|
|
|
*,
|
|
|
|
dtype: str,
|
|
|
|
distributed_executor_backend: Optional[str] = None,
|
|
|
|
):
|
|
|
|
img_processor = CLIPImageProcessor.from_pretrained(model)
|
|
|
|
images = [asset.pil_image for asset in image_assets]
|
|
|
|
pixel_values = [
|
|
|
|
img_processor(images, return_tensors='pt').pixel_values.to(dtype)
|
|
|
|
for images in images
|
|
|
|
]
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
|
|
|
if not getattr(config, "norm_type", None):
|
|
|
|
config.norm_type = "rms_norm"
|
|
|
|
|
|
|
|
hf_model = AutoModel.from_pretrained(model,
|
|
|
|
torch_dtype=dtype,
|
|
|
|
trust_remote_code=True).to("cuda")
|
|
|
|
hf_outputs_per_image = [
|
|
|
|
hf_model(pixel_value.to("cuda")).last_hidden_state
|
|
|
|
for pixel_value in pixel_values
|
|
|
|
]
|
|
|
|
|
2024-08-31 00:19:27 +09:00
|
|
|
from vllm.model_executor.models.intern_vit import InternVisionModel
|
2024-08-20 23:10:20 +08:00
|
|
|
vllm_model = InternVisionModel(config)
|
|
|
|
vllm_model.load_weights(hf_model.state_dict().items())
|
|
|
|
|
|
|
|
del hf_model
|
|
|
|
cleanup()
|
|
|
|
|
|
|
|
vllm_model = vllm_model.to("cuda", dtype)
|
|
|
|
vllm_outputs_per_image = [
|
|
|
|
vllm_model(pixel_values=pixel_value.to("cuda"))
|
|
|
|
for pixel_value in pixel_values
|
|
|
|
]
|
|
|
|
del vllm_model
|
|
|
|
cleanup()
|
|
|
|
|
|
|
|
cos_similar = nn.CosineSimilarity(dim=-1)
|
|
|
|
for vllm_output, hf_output in zip(vllm_outputs_per_image,
|
|
|
|
hf_outputs_per_image):
|
|
|
|
assert cos_similar(vllm_output, hf_output).mean() > 0.99
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", models)
|
|
|
|
@pytest.mark.parametrize("dtype", [torch.half])
|
|
|
|
@torch.inference_mode()
|
|
|
|
def test_models(dist_init, image_assets, model, dtype: str) -> None:
|
|
|
|
run_intern_vit_test(
|
|
|
|
image_assets,
|
|
|
|
model,
|
|
|
|
dtype=dtype,
|
|
|
|
)
|