2024-08-21 15:49:39 -07:00
|
|
|
"""
|
|
|
|
This example shows how to use vLLM for running offline inference
|
2024-08-22 10:02:06 -07:00
|
|
|
with the correct prompt format on audio language models.
|
2024-08-21 15:49:39 -07:00
|
|
|
|
|
|
|
For most models, the prompt format should follow corresponding examples
|
|
|
|
on HuggingFace model repository.
|
|
|
|
"""
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
from vllm.assets.audio import AudioAsset
|
|
|
|
from vllm.utils import FlexibleArgumentParser
|
|
|
|
|
|
|
|
# Input audio and question
|
|
|
|
audio_and_sample_rate = AudioAsset("mary_had_lamb").audio_and_sample_rate
|
|
|
|
question = "What is recited in the audio?"
|
|
|
|
|
|
|
|
|
|
|
|
# Ultravox 0.3
|
|
|
|
def run_ultravox(question):
|
|
|
|
model_name = "fixie-ai/ultravox-v0_3"
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
messages = [{
|
|
|
|
'role': 'user',
|
|
|
|
'content': f"<|reserved_special_token_0|>\n{question}"
|
|
|
|
}]
|
|
|
|
prompt = tokenizer.apply_chat_template(messages,
|
|
|
|
tokenize=False,
|
|
|
|
add_generation_prompt=True)
|
|
|
|
|
|
|
|
llm = LLM(model=model_name)
|
|
|
|
stop_token_ids = None
|
|
|
|
return llm, prompt, stop_token_ids
|
|
|
|
|
|
|
|
|
|
|
|
model_example_map = {
|
|
|
|
"ultravox": run_ultravox,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
model = args.model_type
|
|
|
|
if model not in model_example_map:
|
|
|
|
raise ValueError(f"Model type {model} is not supported.")
|
|
|
|
|
|
|
|
llm, prompt, stop_token_ids = model_example_map[model](question)
|
|
|
|
|
|
|
|
# We set temperature to 0.2 so that outputs can be different
|
|
|
|
# even when all prompts are identical when running batch inference.
|
|
|
|
sampling_params = SamplingParams(temperature=0.2,
|
|
|
|
max_tokens=64,
|
|
|
|
stop_token_ids=stop_token_ids)
|
|
|
|
|
|
|
|
assert args.num_prompts > 0
|
|
|
|
if args.num_prompts == 1:
|
|
|
|
# Single inference
|
|
|
|
inputs = {
|
|
|
|
"prompt": prompt,
|
|
|
|
"multi_modal_data": {
|
|
|
|
"audio": audio_and_sample_rate
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
else:
|
|
|
|
# Batch inference
|
|
|
|
inputs = [{
|
|
|
|
"prompt": prompt,
|
|
|
|
"multi_modal_data": {
|
|
|
|
"audio": audio_and_sample_rate
|
|
|
|
},
|
|
|
|
} for _ in range(args.num_prompts)]
|
|
|
|
|
|
|
|
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
|
|
|
|
|
|
|
for o in outputs:
|
|
|
|
generated_text = o.outputs[0].text
|
|
|
|
print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = FlexibleArgumentParser(
|
|
|
|
description='Demo on using vLLM for offline inference with '
|
|
|
|
'audio language models')
|
|
|
|
parser.add_argument('--model-type',
|
|
|
|
'-m',
|
|
|
|
type=str,
|
|
|
|
default="ultravox",
|
|
|
|
choices=model_example_map.keys(),
|
|
|
|
help='Huggingface "model_type".')
|
|
|
|
parser.add_argument('--num-prompts',
|
|
|
|
type=int,
|
|
|
|
default=1,
|
|
|
|
help='Number of prompts to run.')
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|