vllm/examples/offline_inference_audio_language.py

98 lines
2.9 KiB
Python
Raw Normal View History

"""
This example shows how to use vLLM for running offline inference
with the correct prompt format on audio language models.
For most models, the prompt format should follow corresponding examples
on HuggingFace model repository.
"""
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.utils import FlexibleArgumentParser
# Input audio and question
audio_and_sample_rate = AudioAsset("mary_had_lamb").audio_and_sample_rate
question = "What is recited in the audio?"
# Ultravox 0.3
def run_ultravox(question):
model_name = "fixie-ai/ultravox-v0_3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [{
'role': 'user',
'content': f"<|reserved_special_token_0|>\n{question}"
}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
llm = LLM(model=model_name)
stop_token_ids = None
return llm, prompt, stop_token_ids
model_example_map = {
"ultravox": run_ultravox,
}
def main(args):
model = args.model_type
if model not in model_example_map:
raise ValueError(f"Model type {model} is not supported.")
llm, prompt, stop_token_ids = model_example_map[model](question)
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
sampling_params = SamplingParams(temperature=0.2,
max_tokens=64,
stop_token_ids=stop_token_ids)
assert args.num_prompts > 0
if args.num_prompts == 1:
# Single inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
"audio": audio_and_sample_rate
},
}
else:
# Batch inference
inputs = [{
"prompt": prompt,
"multi_modal_data": {
"audio": audio_and_sample_rate
},
} for _ in range(args.num_prompts)]
outputs = llm.generate(inputs, sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Demo on using vLLM for offline inference with '
'audio language models')
parser.add_argument('--model-type',
'-m',
type=str,
default="ultravox",
choices=model_example_map.keys(),
help='Huggingface "model_type".')
parser.add_argument('--num-prompts',
type=int,
default=1,
help='Number of prompts to run.')
args = parser.parse_args()
main(args)