vllm/tests/lora/test_layers.py

723 lines
26 KiB
Python
Raw Normal View History

import random
from copy import deepcopy
from dataclasses import dataclass
2024-03-25 23:59:47 +09:00
from typing import Dict, List, Optional, Tuple
2024-03-25 23:59:47 +09:00
import pytest
import torch
import torch.nn.functional as F
from vllm.config import LoRAConfig
2024-03-25 23:59:47 +09:00
from vllm.lora.layers import (BaseLayerWithLoRA, ColumnParallelLinearWithLoRA,
LogitsProcessorWithLoRA, LoRAMapping,
MergedColumnParallelLinearWithLoRA,
QKVParallelLinearWithLora,
RowParallelLinearWithLoRA,
VocabParallelEmbeddingWithLoRA)
from vllm.lora.models import (LoRALayerWeights, PackedLoRALayerWeights,
convert_mapping)
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
2024-03-25 23:59:47 +09:00
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.vocab_parallel_embedding import (
2024-03-25 23:59:47 +09:00
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.utils import set_random_seed
from .utils import DummyLoRAManager
TOLERANCES = {
torch.float16: (5e-3, 5e-3),
torch.float32: (5e-3, 5e-3),
torch.bfloat16: (3e-2, 2e-2),
}
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
def get_random_id_to_index(num_loras: int,
num_slots: int,
log: bool = True) -> List[Optional[int]]:
"""Creates a random lora_id_to_index mapping.
Args:
num_loras: The number of active loras in the mapping.
num_slots: The number of slots in the mapping. Must be larger
than num_loras.
log: Whether to log the output.
"""
if num_loras > num_slots:
raise ValueError(
f"num_loras is higher than num_slots: {num_loras} > {num_slots}. "
"num_loras must be less than or equal to num_slots.")
slots: List[Optional[int]] = [None] * num_slots
random_slot_selections = (torch.randperm(num_slots)[:num_loras]).tolist()
for lora_id, slot_idx in enumerate(random_slot_selections, start=1):
slots[slot_idx] = lora_id
if log:
print(f"Created lora_id_to_index mapping: {slots}.")
return slots
def populate_loras(
id_to_index: List[Optional[int]],
layer: BaseLayerWithLoRA,
layer_weights: torch.Tensor,
generate_embeddings_tensor: int = 0,
repeats: int = 1,
) -> Tuple[Dict[int, LoRALayerWeights], Dict[int, List[LoRALayerWeights]]]:
"""This method populates the lora layers with lora weights.
Args:
id_to_index: a list of lora ids. The index of the lora id
represents which memory slot the lora matrices are
stored in. A None value indicates a free slot.
layer: the LoRAlayer to populate.
layer_weights: the PyTorch tensor containing the layer's
weights.
generate_embeddings_tensor: whether to generate an
embeddings tensor for each LoRA.
repeats: must only be set for column parallel packed
layers. Indicates the number of loras to compose
together to create a single lora layer.
"""
# Dictionary that maps the lora ID to the
# corresponding lora weights.
lora_dict: Dict[int, LoRALayerWeights] = dict()
# Dictionary that maps the lora ID to the
# corresponding subloras. Only useful when
# repeats > 1.
sublora_dict: Dict[int, List[LoRALayerWeights]] = dict()
for slot_idx, lora_id in enumerate(id_to_index):
if lora_id is not None:
subloras = []
sublora_len = layer_weights.shape[0] // repeats
for i in range(repeats):
sublora = DummyLoRAManager().init_random_lora(
module_name=f"fake_{i}",
weight=layer_weights,
generate_embeddings_tensor=generate_embeddings_tensor,
)
sublora.lora_b = sublora.lora_b[:, (sublora_len *
i):(sublora_len * (i + 1))]
sublora.optimize()
subloras.append(sublora)
lora = PackedLoRALayerWeights.pack(
subloras) if repeats > 1 else subloras[0]
layer.set_lora(
slot_idx,
lora_a=lora.lora_a,
lora_b=lora.lora_b,
embeddings_tensor=lora.embeddings_tensor,
)
lora_dict[lora_id] = lora
sublora_dict[lora_id] = subloras
return lora_dict, sublora_dict
def create_random_inputs(
active_lora_ids: List[int],
num_inputs: int,
input_size: Tuple[int, ...],
input_range: Tuple[float, float],
input_type: torch.dtype = torch.int,
) -> Tuple[List[torch.Tensor], List[int], List[int]]:
"""Creates random inputs.
Args:
active_lora_ids: lora IDs of active lora weights.
num_inputs: the number of inputs to create.
input_size: the size of each individual input.
input_range: the range of values to include in the input.
input_range[0] <= possible input values < input_range[1]
input_type: the type of values in the input.
"""
low, high = input_range
inputs, index_mapping, prompt_mapping = [], [], []
for _ in range(num_inputs):
if input_type == torch.int:
inputs.append(
torch.randint(low=int(low), high=int(high), size=input_size))
else:
inputs.append(
torch.rand(size=input_size, dtype=input_type) * high + low)
lora_id = random.choice(active_lora_ids)
index_mapping += [lora_id] * input_size[0]
prompt_mapping += [lora_id]
return inputs, index_mapping, prompt_mapping
@torch.inference_mode()
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_embeddings(dist_init, num_loras, device) -> None:
torch.set_default_device(device)
max_loras = 8
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
lora_dtype=torch.float16)
def create_random_embedding_layer():
embedding = VocabParallelEmbedding(512, 256)
embedding.weight.data = torch.rand_like(embedding.weight.data)
embedding.weight.data[512:, :] = 0
lora_embedding = VocabParallelEmbeddingWithLoRA(embedding)
lora_embedding.create_lora_weights(max_loras, lora_config)
return embedding, lora_embedding
for i in range(10):
set_random_seed(i)
id_to_index = get_random_id_to_index(num_loras, max_loras)
embedding, lora_embedding = create_random_embedding_layer()
lora_dict, _ = populate_loras(
id_to_index,
layer=lora_embedding,
layer_weights=embedding.weight.T,
)
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=list(lora_dict.keys()),
num_inputs=num_loras * 3,
input_size=(200, ),
input_range=(1, 512),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info)
lora_result = lora_embedding(torch.cat(inputs))
expected_results = []
for input_, lora_id in zip(inputs, prompt_mapping):
lora = lora_dict[lora_id]
result = embedding(input_)
after_a = F.embedding(
input_,
lora.lora_a,
)
result += (after_a @ lora.lora_b)
expected_results.append(result)
expected_result = torch.cat(expected_results)
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)
# Check that resetting the lora weights succeeds
for slot_idx in range(max_loras):
lora_embedding.reset_lora(slot_idx)
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=[0],
num_inputs=num_loras * 3,
input_size=(200, ),
input_range=(1, 512),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
lora_result = lora_embedding(torch.cat(inputs))
expected_result = embedding(torch.cat(inputs))
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)
@torch.inference_mode()
# @pytest.mark.skip(
# reason="Fails when loras are in any slot other than the first.")
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
torch.set_default_device(device)
max_loras = 8
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
lora_dtype=torch.float16)
def create_random_embedding_layer():
embedding = VocabParallelEmbedding(512, 256)
embedding_data = torch.rand_like(embedding.weight.data)
embedding.weight.data = embedding_data
embedding.weight.data[512:, :] = 0
expanded_embedding = VocabParallelEmbedding(
512 + lora_config.lora_extra_vocab_size * max_loras,
256,
org_num_embeddings=512)
expanded_embedding.weight.data[:512, :] = embedding_data
# We need to deepcopy the embedding as it will be modified
# in place
lora_embedding = VocabParallelEmbeddingWithLoRA(
deepcopy(expanded_embedding))
lora_embedding.create_lora_weights(max_loras, lora_config)
return expanded_embedding, lora_embedding
for i in range(10):
set_random_seed(i)
id_to_index = get_random_id_to_index(num_loras, max_loras)
expanded_embedding, lora_embedding = create_random_embedding_layer()
lora_dict, _ = populate_loras(
id_to_index,
layer=lora_embedding,
layer_weights=torch.zeros(
(256, 512 + lora_config.lora_extra_vocab_size)),
generate_embeddings_tensor=256,
)
# All embeddings tensors have the same shape.
embeddings_tensors = [
lora_dict[id].embeddings_tensor for id in sorted(lora_dict.keys())
]
embeddings_tensor_len = embeddings_tensors[0].shape[0]
# Add empty embeddings_tensors for unoccupied lora slots.
for _ in range(max_loras - len(embeddings_tensors)):
embeddings_tensors.append(torch.zeros(embeddings_tensors[0].shape))
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=list(lora_dict.keys()),
num_inputs=num_loras * 3,
input_size=(200, ),
input_range=(1, 512),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
original_inputs = deepcopy(inputs)
# Force some of the inputs to be in the extended embeddings range
# to guarantee that their behavior is tested.
for input_, original_input_, lora_id in zip(inputs, original_inputs,
prompt_mapping):
embedding_id = lora_id - 1
input_[-1] = 512 + (embedding_id * embeddings_tensor_len)
original_input_[-1] = 512
input_[-2] = 512 + ((embedding_id + 1) * embeddings_tensor_len - 1)
original_input_[-2] = 512 + embeddings_tensor_len - 1
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
expanded_embedding.weight[512:512 +
(embeddings_tensor_len *
max_loras)] = torch.cat(embeddings_tensors)
lora_result = lora_embedding(torch.cat(original_inputs))
expected_results = []
for input_, original_input_, lora_id in zip(inputs, original_inputs,
prompt_mapping):
lora = lora_dict[lora_id]
result = expanded_embedding(input_)
after_a = F.embedding(
original_input_,
lora.lora_a,
)
result += (after_a @ lora.lora_b)
expected_results.append(result)
expected_result = torch.cat(expected_results)
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)
# Check that resetting the lora weights succeeds
for slot_idx in range(max_loras):
lora_embedding.reset_lora(slot_idx)
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=[0],
num_inputs=num_loras * 3,
input_size=(200, ),
input_range=(1, 512),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
original_inputs = deepcopy(inputs)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
lora_result = lora_embedding(torch.cat(original_inputs))
expected_result = expanded_embedding(torch.cat(inputs))
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)
@torch.inference_mode()
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_lm_head_logits_processor(dist_init, num_loras, device) -> None:
torch.set_default_device(device)
max_loras = 8
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
lora_dtype=torch.float16)
def _pretest():
linear = ParallelLMHead(32000 + lora_config.lora_extra_vocab_size,
1024, 32000)
linear.weight.data = torch.rand_like(linear.weight.data)
linear.weight.data[:, 32000:] = 0
logits_processor = LogitsProcessor(
32000 + lora_config.lora_extra_vocab_size, 32000)
lora_logits_processor = LogitsProcessorWithLoRA(
logits_processor, 1024, linear.weight.dtype, linear.weight.device)
lora_logits_processor.create_lora_weights(max_loras, lora_config)
return linear, logits_processor, lora_logits_processor
for i in range(10):
set_random_seed(i)
id_to_index = get_random_id_to_index(num_loras, max_loras)
linear, logits_processor, lora_logits_processor = _pretest()
# NOTE: all the generated loras share the same embeddings tensor.
lora_dict, _ = populate_loras(
id_to_index,
layer=lora_logits_processor,
layer_weights=linear.weight,
generate_embeddings_tensor=1024,
)
embeddings_tensor = list(lora_dict.values())[0].embeddings_tensor
embeddings_tensor_len = embeddings_tensor.shape[0]
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=list(lora_dict.keys()),
num_inputs=8 * num_loras, # * 3,
input_size=(1, 1024),
input_range=(0, 1),
input_type=torch.float32,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
input_ = torch.rand(20, 1024)
mapping_info = convert_mapping(
lora_mapping,
id_to_index,
max_loras,
32000,
lora_config.lora_extra_vocab_size,
)
lora_logits_processor.set_mapping(*mapping_info, )
lora_result = lora_logits_processor._get_logits(
hidden_states=torch.cat(inputs),
embedding=linear.weight,
embedding_bias=None)
original_weight = linear.weight.clone()
linear.weight[logits_processor.
org_vocab_size:logits_processor.org_vocab_size +
embeddings_tensor_len] = embeddings_tensor
logits_processor.org_vocab_size = (32000 +
lora_config.lora_extra_vocab_size)
expected_results = []
for input_, lora_id in zip(inputs, prompt_mapping):
lora = lora_dict[lora_id]
result = logits_processor._get_logits(hidden_states=input_,
embedding=linear.weight,
embedding_bias=None)
result[:, 32000 + embeddings_tensor_len:] = float("-inf")
result += input_ @ lora.lora_a @ lora.lora_b * lora.scaling
expected_results.append(result)
expected_result = torch.cat(expected_results)
logits_processor.org_vocab_size = 32000
# Check that resetting the lora weights succeeds
for slot_idx in range(max_loras):
lora_logits_processor.reset_lora(slot_idx)
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=[0],
num_inputs=8 * num_loras * 3,
input_size=(1, 1024),
input_range=(0, 1),
input_type=torch.float32,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
32000,
lora_config.lora_extra_vocab_size)
lora_logits_processor.set_mapping(*mapping_info, )
lora_result = lora_logits_processor._get_logits(
hidden_states=torch.cat(inputs),
embedding=original_weight,
embedding_bias=None)[:, :32000]
expected_result = logits_processor._get_logits(
hidden_states=torch.cat(inputs),
embedding=original_weight,
embedding_bias=None)
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)
@torch.inference_mode()
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("orientation", ["row", "column"])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_linear_parallel(dist_init, num_loras, orientation, device) -> None:
torch.set_default_device(device)
max_loras = 8
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
lora_dtype=torch.float16)
def create_random_linear_parallel_layer():
if orientation == "row":
linear = RowParallelLinear(4096, 4096, bias=False)
linear.weight.data = torch.rand_like(linear.weight.data)
lora_linear = RowParallelLinearWithLoRA(linear)
else:
linear = ColumnParallelLinear(4096, 4096, bias=False)
linear.weight.data = torch.rand_like(linear.weight.data)
lora_linear = ColumnParallelLinearWithLoRA(linear)
lora_linear.create_lora_weights(max_loras, lora_config)
return linear, lora_linear
for i in range(10):
set_random_seed(i)
id_to_index = get_random_id_to_index(num_loras, max_loras)
linear, lora_linear = create_random_linear_parallel_layer()
lora_dict, _ = populate_loras(
id_to_index,
layer=lora_linear,
layer_weights=linear.weight,
)
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=list(lora_dict.keys()),
num_inputs=32 * num_loras,
input_size=(1, 4096),
input_range=(0, 1),
input_type=torch.float32,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(
lora_mapping,
id_to_index,
max_loras,
512,
lora_config.lora_extra_vocab_size,
)
lora_linear.set_mapping(*mapping_info, )
lora_result = lora_linear(torch.cat(inputs))[0]
expected_results = []
for input_, lora_id in zip(inputs, prompt_mapping):
lora = lora_dict[lora_id]
result = linear(input_)[0]
result += input_ @ lora.lora_a @ lora.lora_b * lora.scaling
expected_results.append(result)
expected_result = torch.cat(expected_results)
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)
# Check that resetting the lora weights succeeds
for slot_idx in range(max_loras):
lora_linear.reset_lora(slot_idx)
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=[0],
num_inputs=32 * num_loras,
input_size=(1, 4096),
input_range=(0, 1),
input_type=torch.float32,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
lora_linear.set_mapping(*mapping_info, )
lora_result = lora_linear(torch.cat(inputs))[0]
expected_result = linear(torch.cat(inputs))[0]
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)
@torch.inference_mode()
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("repeats", [2, 3])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_column_parallel_packed(dist_init, num_loras, repeats, device) -> None:
torch.set_default_device(device)
max_loras = 8
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
lora_dtype=torch.float16)
def create_column_parallel_packed_layer():
if repeats == 2:
linear = MergedColumnParallelLinear(4096, [4096] * repeats,
bias=False)
linear.weight.data = torch.rand_like(linear.weight.data)
lora_linear = MergedColumnParallelLinearWithLoRA(linear)
else:
linear = QKVParallelLinear(4096, 64, 32, bias=False)
linear.weight.data = torch.rand_like(linear.weight.data)
lora_linear = QKVParallelLinearWithLora(linear)
@dataclass
class FakeConfig:
hidden_size = 4096
num_key_value_heads = 32
num_attention_heads = 32
lora_linear.create_lora_weights(max_loras,
lora_config,
model_config=FakeConfig())
return linear, lora_linear
for i in range(10):
set_random_seed(i)
id_to_index = get_random_id_to_index(num_loras, max_loras)
linear, lora_linear = create_column_parallel_packed_layer()
lora_dict, sublora_dict = populate_loras(
id_to_index,
layer=lora_linear,
layer_weights=linear.weight,
repeats=repeats,
)
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=list(lora_dict.keys()),
num_inputs=32 * num_loras,
input_size=(1, 4096),
input_range=(0, 1),
input_type=torch.float32,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(
lora_mapping,
id_to_index,
max_loras,
512,
lora_config.lora_extra_vocab_size,
)
lora_linear.set_mapping(*mapping_info)
lora_result = lora_linear(torch.cat(inputs))[0]
expected_results = []
for input_, lora_id in zip(inputs, prompt_mapping):
result = linear(input_)[0]
subloras = sublora_dict[lora_id]
for i, sublora in enumerate(subloras):
result[:, sublora.lora_b.shape[1] * i:sublora.lora_b.shape[1] *
(i + 1)] += (input_ @ sublora.lora_a @ sublora.lora_b *
sublora.scaling)
expected_results.append(result)
expected_result = torch.cat(expected_results)
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)
for slot_idx in range(max_loras):
lora_linear.reset_lora(slot_idx)
inputs, index_mapping, prompt_mapping = create_random_inputs(
active_lora_ids=[0],
num_inputs=32 * num_loras,
input_size=(1, 4096),
input_range=(0, 1),
input_type=torch.float32,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(
lora_mapping,
id_to_index,
max_loras,
512,
lora_config.lora_extra_vocab_size,
)
lora_linear.set_mapping(*mapping_info)
lora_result = lora_linear(torch.cat(inputs))[0]
expected_result = linear(torch.cat(inputs))[0]
rtol, atol = TOLERANCES[lora_result.dtype]
assert torch.allclose(lora_result,
expected_result,
rtol=rtol,
atol=atol)