2023-06-14 19:55:38 -07:00
|
|
|
"""Benchmark online serving throughput.
|
|
|
|
|
|
|
|
On the server side, run one of the following commands:
|
2023-06-17 03:07:40 -07:00
|
|
|
(vLLM backend)
|
|
|
|
python -m vllm.entrypoints.api_server \
|
2023-06-18 11:39:35 -07:00
|
|
|
--model <your_model> --swap-space 16 \
|
|
|
|
--disable-log-requests
|
2023-06-14 19:55:38 -07:00
|
|
|
|
|
|
|
(TGI backend)
|
|
|
|
./launch_hf_server.sh <your_model>
|
|
|
|
|
|
|
|
On the client side, run:
|
|
|
|
python benchmarks/benchmark_serving.py \
|
|
|
|
--backend <backend> \
|
|
|
|
--tokenizer <your_model> --dataset <target_dataset> \
|
|
|
|
--request-rate <request_rate>
|
|
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import asyncio
|
|
|
|
import json
|
|
|
|
import random
|
|
|
|
import time
|
|
|
|
from typing import AsyncGenerator, List, Tuple
|
|
|
|
|
|
|
|
import aiohttp
|
|
|
|
import numpy as np
|
2023-06-28 09:46:58 -07:00
|
|
|
from transformers import PreTrainedTokenizerBase
|
|
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
2023-06-14 19:55:38 -07:00
|
|
|
|
|
|
|
# (prompt len, output len, latency)
|
|
|
|
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
|
|
|
|
|
|
|
|
|
|
|
|
def sample_requests(
|
|
|
|
dataset_path: str,
|
|
|
|
num_requests: int,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
) -> List[Tuple[str, int, int]]:
|
|
|
|
# Load the dataset.
|
|
|
|
with open(dataset_path) as f:
|
|
|
|
dataset = json.load(f)
|
|
|
|
# Filter out the conversations with less than 2 turns.
|
|
|
|
dataset = [
|
|
|
|
data for data in dataset
|
|
|
|
if len(data["conversations"]) >= 2
|
|
|
|
]
|
|
|
|
# Only keep the first two turns of each conversation.
|
|
|
|
dataset = [
|
|
|
|
(data["conversations"][0]["value"], data["conversations"][1]["value"])
|
|
|
|
for data in dataset
|
|
|
|
]
|
|
|
|
|
|
|
|
# Tokenize the prompts and completions.
|
|
|
|
prompts = [prompt for prompt, _ in dataset]
|
|
|
|
prompt_token_ids = tokenizer(prompts).input_ids
|
|
|
|
completions = [completion for _, completion in dataset]
|
|
|
|
completion_token_ids = tokenizer(completions).input_ids
|
|
|
|
tokenized_dataset = []
|
|
|
|
for i in range(len(dataset)):
|
|
|
|
output_len = len(completion_token_ids[i])
|
|
|
|
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
|
|
|
|
|
|
|
|
# Filter out too long sequences.
|
|
|
|
filtered_dataset: List[Tuple[str, int, int]] = []
|
|
|
|
for prompt, prompt_token_ids, output_len in tokenized_dataset:
|
|
|
|
prompt_len = len(prompt_token_ids)
|
|
|
|
if prompt_len < 4 or output_len < 4:
|
|
|
|
# Prune too short sequences.
|
|
|
|
# This is because TGI causes errors when the input or output length
|
|
|
|
# is too short.
|
|
|
|
continue
|
|
|
|
if prompt_len > 1024 or prompt_len + output_len > 2048:
|
|
|
|
# Prune too long sequences.
|
|
|
|
continue
|
|
|
|
filtered_dataset.append((prompt, prompt_len, output_len))
|
|
|
|
|
|
|
|
# Sample the requests.
|
|
|
|
sampled_requests = random.sample(filtered_dataset, num_requests)
|
|
|
|
return sampled_requests
|
|
|
|
|
|
|
|
|
|
|
|
async def get_request(
|
|
|
|
input_requests: List[Tuple[str, int, int]],
|
|
|
|
request_rate: float,
|
|
|
|
) -> AsyncGenerator[Tuple[str, int, int], None]:
|
|
|
|
input_requests = iter(input_requests)
|
|
|
|
for request in input_requests:
|
|
|
|
yield request
|
|
|
|
|
|
|
|
if request_rate == float("inf"):
|
|
|
|
# If the request rate is infinity, then we don't need to wait.
|
|
|
|
continue
|
|
|
|
# Sample the request interval from the exponential distribution.
|
|
|
|
interval = np.random.exponential(1.0 / request_rate)
|
|
|
|
# The next request will be sent after the interval.
|
|
|
|
await asyncio.sleep(interval)
|
|
|
|
|
|
|
|
|
|
|
|
async def send_request(
|
|
|
|
backend: str,
|
|
|
|
api_url: str,
|
|
|
|
prompt: str,
|
|
|
|
prompt_len: int,
|
|
|
|
output_len: int,
|
|
|
|
best_of: int,
|
|
|
|
use_beam_search: bool,
|
|
|
|
) -> None:
|
2023-10-02 19:22:05 -07:00
|
|
|
request_start_time = time.perf_counter()
|
2023-06-14 19:55:38 -07:00
|
|
|
|
|
|
|
headers = {"User-Agent": "Benchmark Client"}
|
2023-06-17 03:07:40 -07:00
|
|
|
if backend == "vllm":
|
2023-06-14 19:55:38 -07:00
|
|
|
pload = {
|
|
|
|
"prompt": prompt,
|
|
|
|
"n": 1,
|
|
|
|
"best_of": best_of,
|
|
|
|
"use_beam_search": use_beam_search,
|
|
|
|
"temperature": 0.0 if use_beam_search else 1.0,
|
|
|
|
"top_p": 1.0,
|
|
|
|
"max_tokens": output_len,
|
|
|
|
"ignore_eos": True,
|
|
|
|
"stream": False,
|
|
|
|
}
|
|
|
|
elif backend == "tgi":
|
|
|
|
assert not use_beam_search
|
|
|
|
params = {
|
|
|
|
"best_of": best_of,
|
|
|
|
"max_new_tokens": output_len,
|
|
|
|
"do_sample": True,
|
|
|
|
}
|
|
|
|
pload = {
|
|
|
|
"inputs": prompt,
|
|
|
|
"parameters": params,
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unknown backend: {backend}")
|
|
|
|
|
|
|
|
timeout = aiohttp.ClientTimeout(total=3 * 3600)
|
|
|
|
async with aiohttp.ClientSession(timeout=timeout) as session:
|
|
|
|
while True:
|
|
|
|
async with session.post(api_url, headers=headers, json=pload) as response:
|
|
|
|
chunks = []
|
|
|
|
async for chunk, _ in response.content.iter_chunks():
|
|
|
|
chunks.append(chunk)
|
|
|
|
output = b"".join(chunks).decode("utf-8")
|
|
|
|
output = json.loads(output)
|
|
|
|
|
|
|
|
# Re-send the request if it failed.
|
|
|
|
if "error" not in output:
|
|
|
|
break
|
|
|
|
|
2023-10-02 19:22:05 -07:00
|
|
|
request_end_time = time.perf_counter()
|
2023-06-14 19:55:38 -07:00
|
|
|
request_latency = request_end_time - request_start_time
|
|
|
|
REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
|
|
|
|
|
|
|
|
|
|
|
|
async def benchmark(
|
|
|
|
backend: str,
|
|
|
|
api_url: str,
|
|
|
|
input_requests: List[Tuple[str, int, int]],
|
|
|
|
best_of: int,
|
|
|
|
use_beam_search: bool,
|
|
|
|
request_rate: float,
|
|
|
|
) -> None:
|
|
|
|
tasks: List[asyncio.Task] = []
|
|
|
|
async for request in get_request(input_requests, request_rate):
|
|
|
|
prompt, prompt_len, output_len = request
|
|
|
|
task = asyncio.create_task(send_request(backend, api_url, prompt,
|
|
|
|
prompt_len, output_len,
|
|
|
|
best_of, use_beam_search))
|
|
|
|
tasks.append(task)
|
|
|
|
await asyncio.gather(*tasks)
|
|
|
|
|
|
|
|
|
|
|
|
def main(args: argparse.Namespace):
|
|
|
|
print(args)
|
|
|
|
random.seed(args.seed)
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
|
|
|
|
api_url = f"http://{args.host}:{args.port}/generate"
|
2023-07-20 08:06:15 +08:00
|
|
|
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
|
2023-06-14 19:55:38 -07:00
|
|
|
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
|
|
|
|
|
2023-10-02 19:22:05 -07:00
|
|
|
benchmark_start_time = time.perf_counter()
|
2023-06-14 19:55:38 -07:00
|
|
|
asyncio.run(benchmark(args.backend, api_url, input_requests, args.best_of,
|
|
|
|
args.use_beam_search, args.request_rate))
|
2023-10-02 19:22:05 -07:00
|
|
|
benchmark_end_time = time.perf_counter()
|
2023-06-14 19:55:38 -07:00
|
|
|
benchmark_time = benchmark_end_time - benchmark_start_time
|
|
|
|
print(f"Total time: {benchmark_time:.2f} s")
|
|
|
|
print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
|
|
|
|
|
|
|
|
# Compute the latency statistics.
|
|
|
|
avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
|
|
|
|
print(f"Average latency: {avg_latency:.2f} s")
|
|
|
|
avg_per_token_latency = np.mean([
|
|
|
|
latency / (prompt_len + output_len)
|
|
|
|
for prompt_len, output_len, latency in REQUEST_LATENCY
|
|
|
|
])
|
|
|
|
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
|
|
|
|
avg_per_output_token_latency = np.mean([
|
|
|
|
latency / output_len
|
|
|
|
for _, output_len, latency in REQUEST_LATENCY
|
|
|
|
])
|
|
|
|
print("Average latency per output token: "
|
|
|
|
f"{avg_per_output_token_latency:.2f} s")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="Benchmark the online serving throughput.")
|
2023-06-17 03:07:40 -07:00
|
|
|
parser.add_argument("--backend", type=str, default="vllm",
|
|
|
|
choices=["vllm", "tgi"])
|
2023-06-14 19:55:38 -07:00
|
|
|
parser.add_argument("--host", type=str, default="localhost")
|
2023-06-26 13:15:35 -07:00
|
|
|
parser.add_argument("--port", type=int, default=8000)
|
2023-06-14 19:55:38 -07:00
|
|
|
parser.add_argument("--dataset", type=str, required=True,
|
|
|
|
help="Path to the dataset.")
|
|
|
|
parser.add_argument("--tokenizer", type=str, required=True,
|
|
|
|
help="Name or path of the tokenizer.")
|
|
|
|
parser.add_argument("--best-of", type=int, default=1,
|
|
|
|
help="Generates `best_of` sequences per prompt and "
|
|
|
|
"returns the best one.")
|
|
|
|
parser.add_argument("--use-beam-search", action="store_true")
|
|
|
|
parser.add_argument("--num-prompts", type=int, default=1000,
|
|
|
|
help="Number of prompts to process.")
|
|
|
|
parser.add_argument("--request-rate", type=float, default=float("inf"),
|
|
|
|
help="Number of requests per second. If this is inf, "
|
|
|
|
"then all the requests are sent at time 0. "
|
|
|
|
"Otherwise, we use Poisson process to synthesize "
|
|
|
|
"the request arrival times.")
|
|
|
|
parser.add_argument("--seed", type=int, default=0)
|
2023-07-20 08:06:15 +08:00
|
|
|
parser.add_argument('--trust-remote-code', action='store_true',
|
|
|
|
help='trust remote code from huggingface')
|
2023-06-14 19:55:38 -07:00
|
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|