125 lines
4.7 KiB
Python
125 lines
4.7 KiB
Python
![]() |
from typing import List, Tuple
|
||
|
|
||
|
import pytest
|
||
|
from transformers import AutoTokenizer
|
||
|
|
||
|
from vllm.config import VisionLanguageConfig
|
||
|
from vllm.utils import is_cpu
|
||
|
|
||
|
from ..conftest import IMAGE_FILES
|
||
|
|
||
|
pytestmark = pytest.mark.llava
|
||
|
|
||
|
# The image token is placed before "user" on purpose so that the test can pass
|
||
|
HF_IMAGE_PROMPTS = [
|
||
|
"<|user|>\n<|image_1|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501
|
||
|
"<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n",
|
||
|
]
|
||
|
|
||
|
assert len(HF_IMAGE_PROMPTS) == len(IMAGE_FILES)
|
||
|
|
||
|
|
||
|
def iter_phi3v_configs(model_name: str):
|
||
|
image_hw_to_feature_size = {
|
||
|
(1008, 1344): 1921,
|
||
|
}
|
||
|
|
||
|
for (h, w), f in image_hw_to_feature_size.items():
|
||
|
for input_type, input_shape in [
|
||
|
(VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)),
|
||
|
]:
|
||
|
yield (model_name,
|
||
|
VisionLanguageConfig(image_input_type=input_type,
|
||
|
image_feature_size=f,
|
||
|
image_token_id=32044,
|
||
|
image_input_shape=input_shape,
|
||
|
image_processor=model_name,
|
||
|
image_processor_revision=None))
|
||
|
|
||
|
|
||
|
model_and_vl_config = [
|
||
|
*iter_phi3v_configs("microsoft/Phi-3-vision-128k-instruct"),
|
||
|
]
|
||
|
|
||
|
|
||
|
def vllm_to_hf_output(vllm_output: Tuple[List[int], str],
|
||
|
vlm_config: VisionLanguageConfig, model_id: str):
|
||
|
"""Sanitize vllm output to be comparable with hf output.
|
||
|
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
|
||
|
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
|
||
|
It also reduces `output_str` from "<image><image>bla" to "bla".
|
||
|
"""
|
||
|
input_ids, output_str = vllm_output
|
||
|
image_token_id = vlm_config.image_token_id
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||
|
image_token_str = tokenizer.decode(image_token_id)
|
||
|
|
||
|
hf_input_ids = [
|
||
|
input_id if input_id != image_token_id else 0
|
||
|
for idx, input_id in enumerate(input_ids)
|
||
|
]
|
||
|
hf_output_str = output_str \
|
||
|
.replace(image_token_str * vlm_config.image_feature_size, "") \
|
||
|
.replace("<s>", " ").replace("<|user|>", "") \
|
||
|
.replace("<|end|>\n<|assistant|>", " ")
|
||
|
|
||
|
return hf_input_ids, hf_output_str
|
||
|
|
||
|
|
||
|
target_dtype = "half"
|
||
|
if is_cpu():
|
||
|
target_dtype = "bfloat16"
|
||
|
|
||
|
|
||
|
# TODO: Add test for `tensor_parallel_size` [ref: PR #3883]
|
||
|
# Since we use _attn_implementation="eager" for hf_runner, here is
|
||
|
# numeric difference for longer context and test can't pass
|
||
|
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
|
||
|
@pytest.mark.parametrize("dtype", [target_dtype])
|
||
|
@pytest.mark.parametrize("max_tokens", [8])
|
||
|
def test_models(hf_runner, vllm_runner, hf_images, vllm_images,
|
||
|
model_and_config, dtype: str, max_tokens: int) -> None:
|
||
|
"""Inference result should be the same between hf and vllm.
|
||
|
|
||
|
All the image fixtures for the test is under tests/images.
|
||
|
For huggingface runner, we provide the PIL images as input.
|
||
|
For vllm runner, we provide MultiModalData objects and corresponding
|
||
|
vision language config as input.
|
||
|
Note, the text input is also adjusted to abide by vllm contract.
|
||
|
The text output is sanitized to be able to compare with hf.
|
||
|
"""
|
||
|
model_id, vlm_config = model_and_config
|
||
|
|
||
|
# use eager mode for hf runner, since phi3_v didn't work with flash_attn
|
||
|
hf_model_kwargs = {"_attn_implementation": "eager"}
|
||
|
with hf_runner(model_id, dtype=dtype,
|
||
|
model_kwargs=hf_model_kwargs) as hf_model:
|
||
|
hf_outputs = hf_model.generate_greedy(HF_IMAGE_PROMPTS,
|
||
|
max_tokens,
|
||
|
images=hf_images)
|
||
|
|
||
|
vllm_image_prompts = [
|
||
|
p.replace("<|image_1|>",
|
||
|
"<|image|>" * vlm_config.image_feature_size + "<s>")
|
||
|
for p in HF_IMAGE_PROMPTS
|
||
|
]
|
||
|
|
||
|
with vllm_runner(model_id,
|
||
|
max_model_len=2048,
|
||
|
dtype=dtype,
|
||
|
enforce_eager=True,
|
||
|
**vlm_config.as_cli_args_dict()) as vllm_model:
|
||
|
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts,
|
||
|
max_tokens,
|
||
|
images=vllm_images)
|
||
|
|
||
|
for i in range(len(HF_IMAGE_PROMPTS)):
|
||
|
hf_output_ids, hf_output_str = hf_outputs[i]
|
||
|
vllm_output_ids, vllm_output_str = vllm_to_hf_output(
|
||
|
vllm_outputs[i], vlm_config, model_id)
|
||
|
assert hf_output_str == vllm_output_str, (
|
||
|
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
||
|
assert hf_output_ids == vllm_output_ids, (
|
||
|
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|