vllm/benchmarks/benchmark_latency.py

150 lines
5.5 KiB
Python
Raw Normal View History

"""Benchmark the latency of processing a single batch of requests."""
import argparse
import time
from pathlib import Path
from typing import Optional
import numpy as np
import torch
2023-05-22 17:03:40 -07:00
from tqdm import tqdm
2023-06-17 03:07:40 -07:00
from vllm import LLM, SamplingParams
def main(args: argparse.Namespace):
2023-05-22 17:03:40 -07:00
print(args)
# NOTE(woosuk): If the request cannot be processed in a single batch,
2023-06-17 17:25:21 +08:00
# the engine will automatically process the request in multiple batches.
2023-05-22 17:03:40 -07:00
llm = LLM(
model=args.model,
tokenizer=args.tokenizer,
quantization=args.quantization,
2023-05-22 17:03:40 -07:00
tensor_parallel_size=args.tensor_parallel_size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
device=args.device,
2023-05-22 17:03:40 -07:00
)
2023-05-11 15:45:30 -07:00
sampling_params = SamplingParams(
n=args.n,
temperature=0.0 if args.use_beam_search else 1.0,
top_p=1.0,
use_beam_search=args.use_beam_search,
2023-05-22 17:03:40 -07:00
ignore_eos=True,
2023-05-11 15:45:30 -07:00
max_tokens=args.output_len,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompt_token_ids = dummy_prompt_token_ids.tolist()
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir))) as p:
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
print(p.key_averages())
else:
start_time = time.perf_counter()
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
end_time = time.perf_counter()
latency = end_time - start_time
return latency
2023-05-22 17:03:40 -07:00
print("Warming up...")
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
latencies = []
2023-05-22 17:03:40 -07:00
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
2023-12-11 11:19:08 -08:00
latencies.append(run_to_completion(profile_dir=None))
print(f'Avg latency: {np.mean(latencies)} seconds')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
2023-05-22 17:03:40 -07:00
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
2023-05-22 17:03:40 -07:00
parser.add_argument('--model', type=str, default='facebook/opt-125m')
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
2023-12-15 19:04:22 +08:00
choices=['awq', 'gptq', 'squeezellm', None],
default=None)
2023-05-22 17:03:40 -07:00
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--n',
type=int,
default=1,
2023-05-22 17:03:40 -07:00
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters',
type=int,
default=3,
2023-05-22 17:03:40 -07:00
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--enforce-eager',
action='store_true',
help='enforce eager mode and disable CUDA graph')
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=['auto', 'fp8_e5m2'],
default='auto',
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument(
'--profile',
action='store_true',
help='profile the generation process of a single batch')
parser.add_argument(
'--profile-result-dir',
type=str,
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
args = parser.parse_args()
main(args)