356 lines
10 KiB
Markdown
Raw Normal View History

(deployment-k8s)=
# Using Kubernetes
Deploying vLLM on Kubernetes is a scalable and efficient way to serve machine learning models. This guide walks you through deploying vLLM using native Kubernetes.
* [Deployment with CPUs](#deployment-with-cpus)
* [Deployment with GPUs](#deployment-with-gpus)
Alternatively, you can deploy vLLM to Kubernetes using any of the following:
* [Helm](frameworks/helm.md)
* [InftyAI/llmaz](integrations/llmaz.md)
* [KServe](integrations/kserve.md)
* [kubernetes-sigs/lws](frameworks/lws.md)
* [meta-llama/llama-stack](integrations/llamastack.md)
* [substratusai/kubeai](integrations/kubeai.md)
* [vllm-project/aibrix](https://github.com/vllm-project/aibrix)
* [vllm-project/production-stack](integrations/production-stack.md)
## Deployment with CPUs
:::{note}
The use of CPUs here is for demonstration and testing purposes only and its performance will not be on par with GPUs.
:::
First, create a Kubernetes PVC and Secret for downloading and storing Hugging Face model:
```bash
cat <<EOF |kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: vllm-models
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 50Gi
---
apiVersion: v1
kind: Secret
metadata:
name: hf-token-secret
type: Opaque
data:
token: $(HF_TOKEN)
EOF
```
Next, start the vLLM server as a Kubernetes Deployment and Service:
```bash
cat <<EOF |kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: vllm-server
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: vllm
template:
metadata:
labels:
app.kubernetes.io/name: vllm
spec:
containers:
- name: vllm
image: vllm/vllm-openai:latest
command: ["/bin/sh", "-c"]
args: [
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
volumeMounts:
- name: llama-storage
mountPath: /root/.cache/huggingface
volumes:
- name: llama-storage
persistentVolumeClaim:
claimName: vllm-models
---
apiVersion: v1
kind: Service
metadata:
name: vllm-server
spec:
selector:
app.kubernetes.io/name: vllm
ports:
- protocol: TCP
port: 8000
targetPort: 8000
type: ClusterIP
EOF
```
We can verify that the vLLM server has started successfully via the logs (this might take a couple of minutes to download the model):
```console
kubectl logs -l app.kubernetes.io/name=vllm
...
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
```
## Deployment with GPUs
**Pre-requisite**: Ensure that you have a running [Kubernetes cluster with GPUs](https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/).
1. Create a PVC, Secret and Deployment for vLLM
PVC is used to store the model cache and it is optional, you can use hostPath or other storage options
```yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mistral-7b
namespace: default
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 50Gi
storageClassName: default
volumeMode: Filesystem
```
Secret is optional and only required for accessing gated models, you can skip this step if you are not using gated models
```yaml
apiVersion: v1
kind: Secret
metadata:
name: hf-token-secret
namespace: default
type: Opaque
stringData:
token: "REPLACE_WITH_TOKEN"
```
Next to create the deployment file for vLLM to run the model server. The following example deploys the `Mistral-7B-Instruct-v0.3` model.
Here are two examples for using NVIDIA GPU and AMD GPU.
NVIDIA GPU:
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: mistral-7b
namespace: default
labels:
app: mistral-7b
spec:
replicas: 1
selector:
matchLabels:
app: mistral-7b
template:
metadata:
labels:
app: mistral-7b
spec:
volumes:
- name: cache-volume
persistentVolumeClaim:
claimName: mistral-7b
# vLLM needs to access the host's shared memory for tensor parallel inference.
- name: shm
emptyDir:
medium: Memory
sizeLimit: "2Gi"
containers:
- name: mistral-7b
image: vllm/vllm-openai:latest
command: ["/bin/sh", "-c"]
args: [
"vllm serve mistralai/Mistral-7B-Instruct-v0.3 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
resources:
limits:
cpu: "10"
memory: 20G
nvidia.com/gpu: "1"
requests:
cpu: "2"
memory: 6G
nvidia.com/gpu: "1"
volumeMounts:
- mountPath: /root/.cache/huggingface
name: cache-volume
- name: shm
mountPath: /dev/shm
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 60
periodSeconds: 10
readinessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 60
periodSeconds: 5
```
AMD GPU:
You can refer to the `deployment.yaml` below if using AMD ROCm GPU like MI300X.
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: mistral-7b
namespace: default
labels:
app: mistral-7b
spec:
replicas: 1
selector:
matchLabels:
app: mistral-7b
template:
metadata:
labels:
app: mistral-7b
spec:
volumes:
# PVC
- name: cache-volume
persistentVolumeClaim:
claimName: mistral-7b
# vLLM needs to access the host's shared memory for tensor parallel inference.
- name: shm
emptyDir:
medium: Memory
sizeLimit: "8Gi"
hostNetwork: true
hostIPC: true
containers:
- name: mistral-7b
image: rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
securityContext:
seccompProfile:
type: Unconfined
runAsGroup: 44
capabilities:
add:
- SYS_PTRACE
command: ["/bin/sh", "-c"]
args: [
"vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
resources:
limits:
cpu: "10"
memory: 20G
amd.com/gpu: "1"
requests:
cpu: "6"
memory: 6G
amd.com/gpu: "1"
volumeMounts:
- name: cache-volume
mountPath: /root/.cache/huggingface
- name: shm
mountPath: /dev/shm
```
You can get the full example with steps and sample yaml files from <https://github.com/ROCm/k8s-device-plugin/tree/master/example/vllm-serve>.
2. Create a Kubernetes Service for vLLM
Next, create a Kubernetes Service file to expose the `mistral-7b` deployment:
```yaml
apiVersion: v1
kind: Service
metadata:
name: mistral-7b
namespace: default
spec:
ports:
- name: http-mistral-7b
port: 80
protocol: TCP
targetPort: 8000
# The label selector should match the deployment labels & it is useful for prefix caching feature
selector:
app: mistral-7b
sessionAffinity: None
type: ClusterIP
```
3. Deploy and Test
Apply the deployment and service configurations using `kubectl apply -f <filename>`:
```console
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
```
To test the deployment, run the following `curl` command:
```console
curl http://mistral-7b.default.svc.cluster.local/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "mistralai/Mistral-7B-Instruct-v0.3",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
```
If the service is correctly deployed, you should receive a response from the vLLM model.
## Conclusion
Deploying vLLM with Kubernetes allows for efficient scaling and management of ML models leveraging GPU resources. By following the steps outlined above, you should be able to set up and test a vLLM deployment within your Kubernetes cluster. If you encounter any issues or have suggestions, please feel free to contribute to the documentation.