2025-02-02 14:58:18 -05:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
2024-10-11 11:40:06 -04:00
|
|
|
"""Compare the outputs of HF and vLLM when using greedy sampling for Mamba.
|
|
|
|
|
|
|
|
Run `pytest tests/models/test_mamba.py`.
|
|
|
|
"""
|
|
|
|
import pytest
|
2025-02-17 07:17:50 -05:00
|
|
|
import torch
|
2024-10-11 11:40:06 -04:00
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
2024-12-12 22:57:50 -08:00
|
|
|
from vllm.engine.arg_utils import EngineArgs
|
2024-10-11 11:40:06 -04:00
|
|
|
from vllm.sampling_params import SamplingParams
|
|
|
|
|
|
|
|
from ...utils import check_outputs_equal
|
|
|
|
|
2025-02-17 07:17:50 -05:00
|
|
|
MODELS = [
|
|
|
|
"state-spaces/mamba-130m-hf",
|
|
|
|
"tiiuae/falcon-mamba-tiny-dev",
|
|
|
|
# TODO: Compare to a Mamba2 model. The HF transformers implementation of
|
|
|
|
# Mamba2 is buggy for Codestral as it doesn't handle n_groups.
|
|
|
|
# See https://github.com/huggingface/transformers/pull/35943
|
|
|
|
# "mistralai/Mamba-Codestral-7B-v0.1",
|
|
|
|
]
|
2024-10-11 11:40:06 -04:00
|
|
|
|
|
|
|
|
|
|
|
# Use lower-level interfaces to create this greedy generator, as mamba will
|
|
|
|
# choke on the model_kwarg 'attention_mask' if hf_model.generate_greedy is used.
|
|
|
|
def generate_greedy(model_name, example_prompts, max_tokens):
|
|
|
|
# Create a text generation pipeline
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
2025-02-17 07:17:50 -05:00
|
|
|
# Set the device (GPU if available, else CPU)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
model.to(device)
|
|
|
|
|
2024-10-11 11:40:06 -04:00
|
|
|
# Generate texts from the prompts
|
|
|
|
outputs = []
|
|
|
|
for prompt in example_prompts:
|
|
|
|
# Tokenize the input prompt with truncation
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
|
|
|
input_ids = inputs["input_ids"].to(model.device)
|
|
|
|
|
|
|
|
# Generate text using the model's generate method directly
|
2025-02-17 07:17:50 -05:00
|
|
|
generated_ids = model.generate(input_ids,
|
|
|
|
max_new_tokens=max_tokens,
|
|
|
|
do_sample=False)
|
2024-10-11 11:40:06 -04:00
|
|
|
generated_text = tokenizer.decode(generated_ids[0],
|
|
|
|
skip_special_tokens=True)
|
|
|
|
|
|
|
|
outputs.append((generated_ids[0].tolist(), generated_text))
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [96])
|
|
|
|
def test_models(
|
|
|
|
vllm_runner,
|
|
|
|
example_prompts,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
) -> None:
|
|
|
|
hf_outputs = generate_greedy(model, example_prompts, max_tokens)
|
|
|
|
|
2025-02-17 07:17:50 -05:00
|
|
|
# Set max_num_seqs to keep Codestral from going OOM at fp32
|
|
|
|
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
|
2024-10-11 11:40:06 -04:00
|
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
2025-01-20 15:00:59 +08:00
|
|
|
|
2024-10-11 11:40:06 -04:00
|
|
|
for i in range(len(example_prompts)):
|
|
|
|
hf_output_ids, hf_output_str = hf_outputs[i]
|
|
|
|
vllm_output_ids, vllm_output_str = vllm_outputs[i]
|
|
|
|
assert hf_output_str == vllm_output_str, (
|
|
|
|
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
|
|
|
assert hf_output_ids == vllm_output_ids, (
|
|
|
|
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [96])
|
|
|
|
def test_batching(
|
|
|
|
vllm_runner,
|
|
|
|
example_prompts,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
) -> None:
|
|
|
|
# To pass the small model tests, we need full precision.
|
|
|
|
for_loop_outputs = []
|
2025-02-17 07:17:50 -05:00
|
|
|
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
|
2024-10-11 11:40:06 -04:00
|
|
|
for prompt in example_prompts:
|
|
|
|
for_loop_outputs.append(
|
|
|
|
vllm_model.generate_greedy([prompt], max_tokens)[0])
|
|
|
|
|
|
|
|
batched_outputs = vllm_model.generate_greedy(example_prompts,
|
|
|
|
max_tokens)
|
|
|
|
|
|
|
|
check_outputs_equal(
|
|
|
|
outputs_0_lst=for_loop_outputs,
|
|
|
|
outputs_1_lst=batched_outputs,
|
|
|
|
name_0="for_loop_vllm",
|
|
|
|
name_1="batched_vllm",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [10])
|
|
|
|
def test_chunked_prefill_with_parallel_sampling(vllm_runner, example_prompts,
|
|
|
|
model: str, dtype: str,
|
|
|
|
max_tokens: int) -> None:
|
|
|
|
# Tests chunked prefill in conjunction with n>1. In this case, prefill is
|
|
|
|
# populated with decoding tokens and we test that it doesn't fail.
|
|
|
|
# This test might fail if cache is not allocated correctly for n > 1
|
|
|
|
# decoding steps inside a chunked prefill forward pass (where we have both
|
|
|
|
# prefill and decode together )
|
|
|
|
sampling_params = SamplingParams(n=3,
|
|
|
|
temperature=1,
|
|
|
|
seed=0,
|
|
|
|
max_tokens=max_tokens)
|
|
|
|
with vllm_runner(
|
|
|
|
model,
|
|
|
|
dtype=dtype,
|
|
|
|
enable_chunked_prefill=True,
|
|
|
|
max_num_batched_tokens=30,
|
|
|
|
max_num_seqs=10 # forces prefill chunks with decoding
|
|
|
|
) as vllm_model:
|
|
|
|
vllm_model.generate(example_prompts, sampling_params)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
|
|
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
|
|
|
|
def test_chunked_prefill(vllm_runner, example_prompts, model: str, dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
chunked_prefill_token_size: int) -> None:
|
|
|
|
"""
|
|
|
|
Checks exact match decode between huggingface model and vllm runner with
|
|
|
|
chunked prefill.
|
|
|
|
"""
|
|
|
|
max_num_seqs = chunked_prefill_token_size
|
|
|
|
max_num_batched_tokens = chunked_prefill_token_size
|
|
|
|
|
|
|
|
non_chunked = generate_greedy(model, example_prompts, max_tokens)
|
|
|
|
|
|
|
|
with vllm_runner(model,
|
|
|
|
dtype=dtype,
|
|
|
|
enable_chunked_prefill=True,
|
|
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
|
|
max_num_seqs=max_num_seqs) as vllm_model:
|
|
|
|
chunked = vllm_model.generate_greedy(example_prompts,
|
|
|
|
max_tokens=max_tokens)
|
|
|
|
|
|
|
|
check_outputs_equal(
|
|
|
|
outputs_0_lst=chunked,
|
|
|
|
outputs_1_lst=non_chunked,
|
|
|
|
name_0="chunked",
|
|
|
|
name_1="non_chunked",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [15])
|
|
|
|
def test_parallel_sampling(
|
|
|
|
vllm_runner,
|
|
|
|
example_prompts,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
) -> None:
|
|
|
|
|
2025-02-17 07:17:50 -05:00
|
|
|
# Numerical differences produce slightly different output for these
|
|
|
|
if 'state-spaces' in model:
|
|
|
|
example_prompts.pop(0)
|
|
|
|
example_prompts.pop(0)
|
|
|
|
example_prompts.pop(0)
|
|
|
|
|
|
|
|
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
|
2024-10-11 11:40:06 -04:00
|
|
|
for_loop_outputs = []
|
|
|
|
for _ in range(10):
|
|
|
|
for_loop_outputs.append(
|
2025-02-17 07:17:50 -05:00
|
|
|
vllm_model.generate_greedy(example_prompts, max_tokens)[0])
|
2024-10-11 11:40:06 -04:00
|
|
|
sampling_params = SamplingParams(n=10,
|
|
|
|
temperature=0.001,
|
|
|
|
seed=0,
|
|
|
|
max_tokens=max_tokens)
|
2025-02-17 07:17:50 -05:00
|
|
|
n_lt_1_outputs = vllm_model.generate(example_prompts, sampling_params)
|
2024-10-11 11:40:06 -04:00
|
|
|
token_ids, texts = n_lt_1_outputs[0]
|
|
|
|
n_lt_1_outputs = [(token_id, text)
|
|
|
|
for token_id, text in zip(token_ids, texts)]
|
|
|
|
|
|
|
|
check_outputs_equal(
|
|
|
|
outputs_0_lst=n_lt_1_outputs,
|
|
|
|
outputs_1_lst=for_loop_outputs,
|
|
|
|
name_0="vllm_n_lt_1_outputs",
|
|
|
|
name_1="vllm",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [20])
|
|
|
|
def test_mamba_cache_cg_padding(
|
|
|
|
vllm_runner,
|
|
|
|
example_prompts,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
) -> None:
|
|
|
|
# This test is for verifying that mamba cache is padded to CG captured
|
|
|
|
# batch size. If it's not, a torch RuntimeError will be raised because
|
|
|
|
# tensor dimensions aren't compatible
|
2024-12-12 22:57:50 -08:00
|
|
|
vllm_config = EngineArgs(model=model).create_engine_config()
|
|
|
|
while len(example_prompts) == vllm_config.pad_for_cudagraph(
|
2024-12-02 22:19:02 -08:00
|
|
|
len(example_prompts)):
|
2024-10-11 11:40:06 -04:00
|
|
|
example_prompts.append(example_prompts[0])
|
|
|
|
|
|
|
|
try:
|
|
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
|
|
vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
except RuntimeError:
|
|
|
|
pytest.fail(
|
|
|
|
"Couldn't run batch size which is not equal to a Cuda Graph "
|
|
|
|
"captured batch size. "
|
|
|
|
"Could be related to mamba cache not padded correctly")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [20])
|
|
|
|
def test_models_preemption_recompute(
|
|
|
|
vllm_runner,
|
|
|
|
example_prompts,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
) -> None:
|
|
|
|
# Tests that outputs are identical with and w/o preemtions (recompute)
|
|
|
|
assert dtype == "float"
|
|
|
|
|
2025-02-17 07:17:50 -05:00
|
|
|
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
|
2024-10-11 11:40:06 -04:00
|
|
|
vllm_model.model.llm_engine.scheduler[
|
|
|
|
0].ENABLE_ARTIFICIAL_PREEMPT = True
|
|
|
|
preempt_vllm_outputs = vllm_model.generate_greedy(
|
|
|
|
example_prompts, max_tokens)
|
|
|
|
|
|
|
|
vllm_model.model.llm_engine.scheduler[
|
|
|
|
0].ENABLE_ARTIFICIAL_PREEMPT = False
|
|
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
|
|
|
|
check_outputs_equal(
|
|
|
|
outputs_0_lst=preempt_vllm_outputs,
|
|
|
|
outputs_1_lst=vllm_outputs,
|
|
|
|
name_0="vllm_preepmtions",
|
|
|
|
name_1="vllm",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
def test_fail_upon_inc_requests_and_finished_requests_lt_available_blocks(
|
|
|
|
vllm_runner,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
example_prompts,
|
|
|
|
) -> None:
|
|
|
|
# This test is for verifying that the Mamba inner state management doesn't
|
|
|
|
# collapse in case where the number of incoming requests and
|
|
|
|
# finished_requests_ids is larger than the maximum Mamba block capacity.
|
|
|
|
# This could generally happen due to the fact that Mamba does support
|
|
|
|
# statelessness mechanism where it can cleanup new incoming requests in
|
|
|
|
# a single step.
|
|
|
|
try:
|
|
|
|
with vllm_runner(model, dtype=dtype, max_num_seqs=10) as vllm_model:
|
|
|
|
vllm_model.generate_greedy([example_prompts[0]] * 100, 10)
|
|
|
|
except ValueError:
|
|
|
|
pytest.fail("Mamba inner state wasn't cleaned up properly between"
|
|
|
|
"steps finished requests registered unnecessarily ")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
def test_state_cleanup(
|
|
|
|
vllm_runner,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
example_prompts,
|
|
|
|
) -> None:
|
|
|
|
# This test is for verifying that the Mamba state is cleaned up between
|
|
|
|
# steps, If its not cleaned, an error would be expected.
|
|
|
|
try:
|
2025-02-17 07:17:50 -05:00
|
|
|
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
|
2024-10-11 11:40:06 -04:00
|
|
|
for _ in range(10):
|
|
|
|
vllm_model.generate_greedy([example_prompts[0]] * 100, 1)
|
|
|
|
except ValueError:
|
|
|
|
pytest.fail("Mamba inner state wasn't cleaned up between states, "
|
|
|
|
"could be related to finished_requests_ids")
|
2024-11-27 21:02:27 +02:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
def test_multistep(
|
|
|
|
vllm_runner,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
example_prompts,
|
|
|
|
) -> None:
|
|
|
|
with vllm_runner(model, num_scheduler_steps=8,
|
|
|
|
max_num_seqs=2) as vllm_model:
|
|
|
|
vllm_model.generate_greedy([example_prompts[0]] * 10, 1)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [64])
|
|
|
|
def test_multistep_correctness(vllm_runner, model: str, dtype: str,
|
|
|
|
max_tokens: int, example_prompts) -> None:
|
|
|
|
with vllm_runner(model, num_scheduler_steps=8,
|
|
|
|
max_num_seqs=2) as vllm_model:
|
|
|
|
vllm_outputs_multistep = vllm_model.generate_greedy(
|
|
|
|
example_prompts, max_tokens)
|
|
|
|
|
|
|
|
with vllm_runner(model, num_scheduler_steps=1,
|
|
|
|
max_num_seqs=2) as vllm_model:
|
|
|
|
vllm_outputs_single_step = vllm_model.generate_greedy(
|
|
|
|
example_prompts, max_tokens)
|
|
|
|
|
|
|
|
check_outputs_equal(
|
|
|
|
outputs_0_lst=vllm_outputs_multistep,
|
|
|
|
outputs_1_lst=vllm_outputs_single_step,
|
|
|
|
name_0="vllm_outputs_multistep",
|
|
|
|
name_1="vllm_outputs_single_step",
|
|
|
|
)
|