Although we recommend using ``conda`` to create and manage Python environments, it is highly recommended to use ``pip`` to install vLLM. This is because ``pip`` can install ``torch`` with separate library packages like ``NCCL``, while ``conda`` installs ``torch`` with statically linked ``NCCL``. This can cause issues when vLLM tries to use ``NCCL``. See `this issue <https://github.com/vllm-project/vllm/issues/8420>`_ for more details.
In order to be performant, vLLM has to compile many cuda kernels. The compilation unfortunately introduces binary incompatibility with other CUDA versions and PyTorch versions, even for the same PyTorch version with different building configurations.
Therefore, it is recommended to install vLLM with a **fresh new** conda environment. If either you have a different CUDA version or you want to use an existing PyTorch installation, you need to build vLLM from source. See below for instructions.
vLLM also publishes a subset of wheels (Python 3.10, 3.11 with CUDA 12) for every commit since v0.5.3. You can download them with the following command:
This will uninstall existing PyTorch, and install the version required by vLLM. If you want to use an existing PyTorch installation, there need to be some changes:
-``python use_existing_torch.py``: This script will remove all the PyTorch versions in the requirements files, so that the existing PyTorch installation will be used.
-``pip install -r requirements-build.txt``: You need to manually install the requirements for building vLLM.
-``pip install -e . --no-build-isolation``: You need to disable build isolation, so that the build system can use the existing PyTorch installation.
This is especially useful when the PyTorch dependency cannot be easily installed via pip, e.g.:
- build vLLM with PyTorch nightly or a custom PyTorch build.
- build vLLM with aarch64 and cuda (GH200), where the PyTorch wheels are not available on PyPI. Currently, only PyTorch nightly has wheels for aarch64 with CUDA. You can run ``pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu124`` to install PyTorch nightly, and then build vLLM on top of it.
vLLM can fully run only on Linux, but you can still build it on other systems (for example, macOS). This build is only for development purposes, allowing for imports and a more convenient dev environment. The binaries will not be compiled and not work on non-Linux systems. You can create such a build with the following commands:
Building from source requires quite a lot compilation. If you are building from source for multiple times, it is beneficial to cache the compilation results. For example, you can install `ccache <https://github.com/ccache/ccache>`_ via either ``conda install ccache`` or ``apt install ccache`` . As long as ``which ccache`` command can find the ``ccache`` binary, it will be used automatically by the build system. After the first build, the subsequent builds will be much faster.
This is especially useful when you are building on less powerful machines. For example, when you use WSL, it only `gives you half of the memory by default <https://learn.microsoft.com/en-us/windows/wsl/wsl-config>`_, and you'd better use ``export MAX_JOBS=1`` to avoid compiling multiple files simultaneously and running out of memory. The side effect is that the build process will be much slower. If you only touch the Python code, slow compilation is okay, as you are building in an editable mode: you can just change the code and run the Python script without any re-compilation or re-installation.
If you don't want to use docker, it is recommended to have a full installation of CUDA Toolkit. You can download and install it from `the official website <https://developer.nvidia.com/cuda-toolkit-archive>`_. After installation, set the environment variable ``CUDA_HOME`` to the installation path of CUDA Toolkit, and make sure that the ``nvcc`` compiler is in your ``PATH``, e.g.: