vllm/docs/source/models/structured_outputs.rst

268 lines
11 KiB
ReStructuredText
Raw Normal View History

.. _structured_outputs:
Structured Outputs
==================
vLLM supports the generation of structured outputs using `outlines <https://github.com/dottxt-ai/outlines>`_ or `lm-format-enforcer <https://github.com/noamgat/lm-format-enforcer>`_ as backends for the guided decoding.
This document shows you some examples of the different options that are available to generate structured outputs.
Online Inference (OpenAI API)
-----------------------------
You can generate structured outputs using the OpenAI's `Completions <https://platform.openai.com/docs/api-reference/completions>`_ and `Chat <https://platform.openai.com/docs/api-reference/chat>`_ API.
The following parameters are supported, which must be added as extra parameters:
- ``guided_choice``: the output will be exactly one of the choices.
- ``guided_regex``: the output will follow the regex pattern.
- ``guided_json``: the output will follow the JSON schema.
- ``guided_grammar``: the output will follow the context free grammar.
- ``guided_whitespace_pattern``: used to override the default whitespace pattern for guided json decoding.
- ``guided_decoding_backend``: used to select the guided decoding backend to use.
You can see the complete list of supported parameters on the `OpenAI Compatible Server </../serving/openai_compatible_server.html>`_ page.
Now let´s see an example for each of the cases, starting with the ``guided_choice``, as it´s the easiest one:
.. code-block:: python
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="-",
)
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
],
extra_body={"guided_choice": ["positive", "negative"]},
)
print(completion.choices[0].message.content)
The next example shows how to use the ``guided_regex``. The idea is to generate an email address, given a simple regex template:
.. code-block:: python
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[
{
"role": "user",
"content": "Generate an example email address for Alan Turing, who works in Enigma. End in .com and new line. Example result: alan.turing@enigma.com\n",
}
],
extra_body={"guided_regex": "\w+@\w+\.com\n", "stop": ["\n"]},
)
print(completion.choices[0].message.content)
One of the most relevant features in structured text generation is the option to generate a valid JSON with pre-defined fields and formats.
For this we can use the ``guided_json`` parameter in two different ways:
- Using directly a `JSON Schema <https://json-schema.org/>`_
- Defining a `Pydantic model <https://docs.pydantic.dev/latest/>`_ and then extracting the JSON Schema from it (which is normally an easier option).
The next example shows how to use the ``guided_json`` parameter with a Pydantic model:
.. code-block:: python
from pydantic import BaseModel
from enum import Enum
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
json_schema = CarDescription.model_json_schema()
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[
{
"role": "user",
"content": "Generate a JSON with the brand, model and car_type of the most iconic car from the 90's",
}
],
extra_body={"guided_json": json_schema},
)
print(completion.choices[0].message.content)
.. tip::
While not strictly necessary, normally it´s better to indicate in the prompt that a JSON needs to be generated and which fields and how should the LLM fill them.
This can improve the results notably in most cases.
Finally we have the ``guided_grammar``, which probably is the most difficult one to use but it´s really powerful, as it allows us to define complete languages like SQL queries.
It works by using a context free EBNF grammar, which for example we can use to define a specific format of simplified SQL queries, like in the example below:
.. code-block:: python
simplified_sql_grammar = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[
{
"role": "user",
"content": "Generate an SQL query to show the 'username' and 'email' from the 'users' table.",
}
],
extra_body={"guided_grammar": simplified_sql_grammar},
)
print(completion.choices[0].message.content)
The complete code of the examples can be found on `examples/openai_chat_completion_structured_outputs.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_structured_outputs.py>`_.
Experimental Automatic Parsing (OpenAI API)
--------------------------------------------
This section covers the OpenAI beta wrapper over the ``client.chat.completions.create()`` method that provides richer integrations with Python specific types.
At the time of writing (``openai==1.54.4``), this is a "beta" feature in the OpenAI client library. Code reference can be found `here <https://github.com/openai/openai-python/blob/52357cff50bee57ef442e94d78a0de38b4173fc2/src/openai/resources/beta/chat/completions.py#L100-L104>`_.
For the following examples, vLLM was setup using ``vllm serve meta-llama/Llama-3.1-8B-Instruct``
Here is a simple example demonstrating how to get structured output using Pydantic models:
.. code-block:: python
from pydantic import BaseModel
from openai import OpenAI
class Info(BaseModel):
name: str
age: int
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummy")
completion = client.beta.chat.completions.parse(
model="meta-llama/Llama-3.1-8B-Instruct",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "My name is Cameron, I'm 28. What's my name and age?"},
],
response_format=Info,
extra_body=dict(guided_decoding_backend="outlines"),
)
message = completion.choices[0].message
print(message)
assert message.parsed
print("Name:", message.parsed.name)
print("Age:", message.parsed.age)
Output:
.. code-block:: console
ParsedChatCompletionMessage[Testing](content='{"name": "Cameron", "age": 28}', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=[], parsed=Testing(name='Cameron', age=28))
Name: Cameron
Age: 28
Here is a more complex example using nested Pydantic models to handle a step-by-step math solution:
.. code-block:: python
from typing import List
from pydantic import BaseModel
from openai import OpenAI
class Step(BaseModel):
explanation: str
output: str
class MathResponse(BaseModel):
steps: List[Step]
final_answer: str
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummy")
completion = client.beta.chat.completions.parse(
model="meta-llama/Llama-3.1-8B-Instruct",
messages=[
{"role": "system", "content": "You are a helpful expert math tutor."},
{"role": "user", "content": "Solve 8x + 31 = 2."},
],
response_format=MathResponse,
extra_body=dict(guided_decoding_backend="outlines"),
)
message = completion.choices[0].message
print(message)
assert message.parsed
for i, step in enumerate(message.parsed.steps):
print(f"Step #{i}:", step)
print("Answer:", message.parsed.final_answer)
Output:
.. code-block:: console
ParsedChatCompletionMessage[MathResponse](content='{ "steps": [{ "explanation": "First, let\'s isolate the term with the variable \'x\'. To do this, we\'ll subtract 31 from both sides of the equation.", "output": "8x + 31 - 31 = 2 - 31"}, { "explanation": "By subtracting 31 from both sides, we simplify the equation to 8x = -29.", "output": "8x = -29"}, { "explanation": "Next, let\'s isolate \'x\' by dividing both sides of the equation by 8.", "output": "8x / 8 = -29 / 8"}], "final_answer": "x = -29/8" }', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=[], parsed=MathResponse(steps=[Step(explanation="First, let's isolate the term with the variable 'x'. To do this, we'll subtract 31 from both sides of the equation.", output='8x + 31 - 31 = 2 - 31'), Step(explanation='By subtracting 31 from both sides, we simplify the equation to 8x = -29.', output='8x = -29'), Step(explanation="Next, let's isolate 'x' by dividing both sides of the equation by 8.", output='8x / 8 = -29 / 8')], final_answer='x = -29/8'))
Step #0: explanation="First, let's isolate the term with the variable 'x'. To do this, we'll subtract 31 from both sides of the equation." output='8x + 31 - 31 = 2 - 31'
Step #1: explanation='By subtracting 31 from both sides, we simplify the equation to 8x = -29.' output='8x = -29'
Step #2: explanation="Next, let's isolate 'x' by dividing both sides of the equation by 8." output='8x / 8 = -29 / 8'
Answer: x = -29/8
Offline Inference
-----------------
Offline inference allows for the same types of guided decoding.
To use it, we´ll need to configure the guided decoding using the class ``GuidedDecodingParams`` inside ``SamplingParams``.
The main available options inside ``GuidedDecodingParams`` are:
- ``json``
- ``regex``
- ``choice``
- ``grammar``
- ``backend``
- ``whitespace_pattern``
These parameters can be used in the same way as the parameters from the Online Inference examples above.
One example for the usage of the ``choices`` parameter is shown below:
.. code-block:: python
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
llm = LLM(model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
outputs = llm.generate(
prompts="Classify this sentiment: vLLM is wonderful!",
sampling_params=sampling_params,
)
print(outputs[0].outputs[0].text)
A complete example with all options can be found in `examples/offline_inference_structured_outputs.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_structured_outputs.py>`_.