vllm/tests/kernels/test_fused_quant_layernorm.py

174 lines
6.0 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
from typing import Optional, Union
import pytest
import torch
import vllm._custom_ops as ops
from tests.kernels.utils import opcheck
from vllm.model_executor.layers.layernorm import RMSNorm
DTYPES = [torch.bfloat16, torch.float]
QUANT_DTYPES = [torch.int8, torch.float8_e4m3fn]
VEC_HIDDEN_SIZES = range(1024, 1030)
# Avoid combinatorial explosion with full Cartesian product
NUM_TOKENS_HIDDEN_SIZES = [
*[(1, i) for i in [1, 64, *VEC_HIDDEN_SIZES, 5120, 5137]],
*[(83, i) for i in [1, 1033, 2048, 5120]],
*[(2048, i) for i in [1, 64, *VEC_HIDDEN_SIZES, 5137]],
*[(4096, i) for i in [1, 64, 5137]],
]
ADD_RESIDUAL = [False, True]
SCALE_UBS = [True, False]
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
EPS = 1e-6
## Helpers
def as_float32_tensor(x: Union[float, torch.tensor]) -> torch.tensor:
return torch.as_tensor(x, dtype=torch.float32, device='cuda')
def ref_rms_norm(rms_norm_layer: RMSNorm,
x: torch.Tensor,
residual: Optional[torch.Tensor]) \
-> tuple[torch.Tensor, Optional[torch.Tensor]]:
if residual is not None:
residual = residual.clone()
out, residual = rms_norm_layer.forward_native(x, residual)
else:
out = rms_norm_layer.forward_native(x)
return out, residual
def ref_dynamic_per_token_quant(rms_norm_layer: RMSNorm,
x: torch.Tensor,
quant_dtype: torch.dtype,
residual: Optional[torch.Tensor],
scale_ub: Optional[torch.Tensor]) \
-> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
if scale_ub is not None:
assert quant_dtype == torch.float8_e4m3fn
# Norm
torch_out, residual = ref_rms_norm(rms_norm_layer, x, residual)
# Quant
if quant_dtype == torch.float8_e4m3fn:
torch_out, scales = ops.scaled_fp8_quant(torch_out,
scale_ub=scale_ub,
use_per_token_if_dynamic=True)
else:
assert quant_dtype == torch.int8
torch_out, scales = ops.scaled_int8_quant(torch_out)
return torch_out, scales, residual
def ref_impl(rms_norm_layer: RMSNorm,
x: torch.Tensor,
quant_dtype: torch.dtype,
residual: Optional[torch.Tensor],
scale_ub: Optional[torch.Tensor]) \
-> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
return ref_dynamic_per_token_quant(rms_norm_layer, x, quant_dtype,
residual, scale_ub)
def ops_dynamic_per_token_quant(weight: torch.Tensor,
x: torch.Tensor,
quant_dtype: torch.dtype,
residual: Optional[torch.Tensor],
scale_ub: Optional[torch.Tensor]) \
-> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
if residual is not None:
residual = residual.clone()
out, scales = ops.rms_norm_dynamic_per_token_quant(x, weight, EPS,
quant_dtype, scale_ub,
residual)
return out, scales, residual
def ops_impl(weight: torch.Tensor,
x: torch.Tensor,
quant_dtype: torch.dtype,
residual: Optional[torch.Tensor],
scale_ub: Optional[torch.Tensor]) \
-> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
return ops_dynamic_per_token_quant(weight, x, quant_dtype, residual,
scale_ub)
@pytest.mark.parametrize("num_tokens, hidden_size", NUM_TOKENS_HIDDEN_SIZES)
@pytest.mark.parametrize("add_residual", ADD_RESIDUAL)
@pytest.mark.parametrize("scale_ub", SCALE_UBS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("quant_dtype", QUANT_DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_rms_norm(
num_tokens: int,
hidden_size: int,
add_residual: bool,
scale_ub: bool,
dtype: torch.dtype,
quant_dtype: torch.dtype,
seed: int,
device: str,
) -> None:
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.set_default_device(device)
if scale_ub is not None and quant_dtype != torch.float8_e4m3fn:
# skip
return
layer = RMSNorm(hidden_size, EPS).to(dtype=dtype)
# Make weights
layer.weight.data.normal_(mean=1.0, std=0.1)
# Make inputs
scale = 1 / (hidden_size)
x = torch.randn(num_tokens, hidden_size, dtype=dtype) * scale
residual = torch.randn_like(x) * scale if add_residual else None
if scale_ub is not None:
rms_x, _ = ref_rms_norm(layer, x, residual)
scale_ub = torch.mean(rms_x).to(dtype=torch.float32, device='cuda')
ref_out, ref_scales, ref_residual = \
ref_impl(layer, x, quant_dtype, residual, scale_ub)
ops_out, ops_scales, ops_residual = \
ops_impl(layer.weight, x, quant_dtype, residual, scale_ub)
assert ref_out.dtype == quant_dtype
assert ops_out.dtype == quant_dtype
assert torch.allclose(ref_scales, ops_scales)
if quant_dtype == torch.int8:
# big atol to account for round-off errors.
assert torch.allclose(ref_out, ops_out, atol=1)
else:
assert torch.allclose(ref_out.to(dtype=torch.float32),
ops_out.to(dtype=torch.float32))
if add_residual:
assert torch.allclose(ref_residual, ops_residual)
output = torch.empty_like(x, dtype=quant_dtype)
scales = torch.empty((x.numel() // x.shape[-1], 1),
device=x.device,
dtype=torch.float32)
opcheck(torch.ops._C.rms_norm_dynamic_per_token_quant,
(output, x, layer.weight, scales, 1e-5, scale_ub, residual))