2025-02-22 19:28:59 +08:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# usage: VLLM_USE_V1=1 python examples/offline_inference/data_parallel.py
|
|
|
|
# we need to have a launcher to create multiple data parallel
|
|
|
|
# ranks. And each rank will create a vLLM instance to process its own prompts.
|
|
|
|
import os
|
|
|
|
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
from vllm.utils import get_open_port
|
|
|
|
|
|
|
|
|
|
|
|
def main(dp_size, dp_rank, dp_master_ip, dp_master_port, GPUs_per_dp_rank):
|
|
|
|
os.environ["VLLM_DP_RANK"] = str(dp_rank)
|
|
|
|
os.environ["VLLM_DP_SIZE"] = str(dp_size)
|
|
|
|
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
|
|
|
|
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
|
|
|
|
# set devices for each dp_rank
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
|
|
|
|
str(i) for i in range(dp_rank * GPUs_per_dp_rank, (dp_rank + 1) *
|
|
|
|
GPUs_per_dp_rank))
|
|
|
|
|
|
|
|
# Sample prompts.
|
|
|
|
prompts = [
|
|
|
|
"Hello, my name is",
|
|
|
|
"The president of the United States is",
|
|
|
|
"The capital of France is",
|
|
|
|
"The future of AI is",
|
|
|
|
]
|
|
|
|
|
|
|
|
# with DP, each rank should process different prompts.
|
|
|
|
# usually all the DP ranks process a full dataset,
|
|
|
|
# and each rank processes a different part of the dataset.
|
|
|
|
promts_per_rank = len(prompts) // dp_size
|
|
|
|
start = dp_rank * promts_per_rank
|
|
|
|
end = start + promts_per_rank
|
|
|
|
prompts = prompts[start:end]
|
|
|
|
if len(prompts) == 0:
|
|
|
|
# if any rank has no prompts to process,
|
|
|
|
# we need to set a placeholder prompt
|
|
|
|
prompts = ["Placeholder"]
|
|
|
|
print(f"DP rank {dp_rank} needs to process {len(prompts)} prompts")
|
|
|
|
|
|
|
|
# Create a sampling params object.
|
|
|
|
# since we are doing data parallel, every rank can have different
|
|
|
|
# sampling params. here we set different max_tokens for different
|
|
|
|
# ranks for demonstration.
|
|
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
|
|
top_p=0.95,
|
|
|
|
max_tokens=16 * (dp_rank + 1))
|
|
|
|
|
|
|
|
# Create an LLM.
|
2025-02-22 20:28:59 +08:00
|
|
|
llm = LLM(model="facebook/opt-125m",
|
|
|
|
tensor_parallel_size=2,
|
|
|
|
enforce_eager=True)
|
2025-02-22 19:28:59 +08:00
|
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
# Print the outputs.
|
|
|
|
for output in outputs:
|
|
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
2025-02-22 20:28:59 +08:00
|
|
|
print(f"DP rank {dp_rank}, Prompt: {prompt!r}, "
|
|
|
|
f"Generated text: {generated_text!r}")
|
2025-02-22 19:28:59 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
from multiprocessing import Process
|
|
|
|
dp_size = 2
|
|
|
|
GPUs_per_dp_rank = 2
|
|
|
|
dp_master_ip = "127.0.0.1"
|
|
|
|
dp_master_port = get_open_port()
|
|
|
|
procs = []
|
|
|
|
for i in range(dp_size):
|
|
|
|
proc = Process(target=main,
|
|
|
|
args=(dp_size, i, dp_master_ip, dp_master_port,
|
|
|
|
GPUs_per_dp_rank))
|
|
|
|
proc.start()
|
|
|
|
procs.append(proc)
|
|
|
|
for proc in procs:
|
|
|
|
proc.join()
|