200 lines
6.1 KiB
Python
Raw Normal View History

"""Compare the outputs of HF and vLLM for Mistral models using greedy sampling.
Run `pytest tests/models/test_mistral.py`.
"""
import json
import uuid
from dataclasses import asdict
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import pytest
from mistral_common.protocol.instruct.messages import ImageURLChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.tokenizers.multimodal import image_from_chunk
from vllm import EngineArgs, LLMEngine, SamplingParams, TokensPrompt
from vllm.multimodal import MultiModalDataBuiltins
from vllm.sequence import Logprob, SampleLogprobs
from ....utils import VLLM_PATH
from ...utils import check_logprobs_close
if TYPE_CHECKING:
from _typeshed import StrPath
MODELS = ["mistralai/Pixtral-12B-2409"]
IMG_URLS = [
"https://picsum.photos/id/237/400/300",
"https://picsum.photos/id/231/200/300",
"https://picsum.photos/id/27/500/500",
"https://picsum.photos/id/17/150/600",
]
PROMPT = "Describe each image in one short sentence."
def _create_msg_format(urls: List[str]) -> List[Dict[str, Any]]:
return [{
"role":
"user",
"content": [{
"type": "text",
"text": PROMPT,
}] + [{
"type": "image_url",
"image_url": {
"url": url
}
} for url in urls],
}]
def _create_engine_inputs(urls: List[str]) -> TokensPrompt:
msg = _create_msg_format(urls)
tokenizer = MistralTokenizer.from_model("pixtral")
request = ChatCompletionRequest(messages=msg) # type: ignore[type-var]
tokenized = tokenizer.encode_chat_completion(request)
engine_inputs = TokensPrompt(prompt_token_ids=tokenized.tokens)
images = []
for chunk in request.messages[0].content:
if isinstance(chunk, ImageURLChunk):
images.append(image_from_chunk(chunk))
mm_data = MultiModalDataBuiltins(image=images)
engine_inputs["multi_modal_data"] = mm_data
return engine_inputs
MSGS = [
_create_msg_format(IMG_URLS[:1]),
_create_msg_format(IMG_URLS[:2]),
_create_msg_format(IMG_URLS),
]
ENGINE_INPUTS = [
_create_engine_inputs(IMG_URLS[:1]),
_create_engine_inputs(IMG_URLS[:2]),
_create_engine_inputs(IMG_URLS),
]
SAMPLING_PARAMS = SamplingParams(max_tokens=512, temperature=0.0, logprobs=5)
LIMIT_MM_PER_PROMPT = dict(image=4)
MAX_MODEL_LEN = [8192, 65536]
FIXTURES_PATH = VLLM_PATH / "tests/models/fixtures"
assert FIXTURES_PATH.exists()
FIXTURE_LOGPROBS_CHAT = FIXTURES_PATH / "pixtral_chat.json"
FIXTURE_LOGPROBS_ENGINE = FIXTURES_PATH / "pixtral_chat_engine.json"
OutputsLogprobs = List[Tuple[List[int], str, Optional[SampleLogprobs]]]
# For the test author to store golden output in JSON
def _dump_outputs_w_logprobs(
outputs: OutputsLogprobs,
filename: "StrPath",
) -> None:
json_data = [(tokens, text,
[{k: asdict(v)
for k, v in token_logprobs.items()}
for token_logprobs in (logprobs or [])])
for tokens, text, logprobs in outputs]
with open(filename, "w") as f:
json.dump(json_data, f)
def load_outputs_w_logprobs(filename: "StrPath") -> OutputsLogprobs:
with open(filename, "rb") as f:
json_data = json.load(f)
return [(tokens, text,
[{int(k): Logprob(**v)
for k, v in token_logprobs.items()}
for token_logprobs in logprobs])
for tokens, text, logprobs in json_data]
@pytest.mark.skip(
reason=
"Model is too big, test passed on A100 locally but will OOM on CI machine."
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("max_model_len", MAX_MODEL_LEN)
@pytest.mark.parametrize("dtype", ["bfloat16"])
def test_chat(
vllm_runner,
max_model_len: int,
model: str,
dtype: str,
) -> None:
EXPECTED_CHAT_LOGPROBS = load_outputs_w_logprobs(FIXTURE_LOGPROBS_CHAT)
with vllm_runner(
model,
dtype=dtype,
tokenizer_mode="mistral",
enable_chunked_prefill=False,
max_model_len=max_model_len,
limit_mm_per_prompt=LIMIT_MM_PER_PROMPT,
) as vllm_model:
outputs = []
for msg in MSGS:
output = vllm_model.model.chat(msg,
sampling_params=SAMPLING_PARAMS)
outputs.extend(output)
logprobs = vllm_runner._final_steps_generate_w_logprobs(outputs)
check_logprobs_close(outputs_0_lst=EXPECTED_CHAT_LOGPROBS,
outputs_1_lst=logprobs,
name_0="h100_ref",
name_1="output")
@pytest.mark.skip(
reason=
"Model is too big, test passed on A100 locally but will OOM on CI machine."
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
def test_model_engine(vllm_runner, model: str, dtype: str) -> None:
EXPECTED_ENGINE_LOGPROBS = load_outputs_w_logprobs(FIXTURE_LOGPROBS_ENGINE)
args = EngineArgs(
model=model,
tokenizer_mode="mistral",
enable_chunked_prefill=False,
limit_mm_per_prompt=LIMIT_MM_PER_PROMPT,
dtype=dtype,
)
engine = LLMEngine.from_engine_args(args)
engine.add_request(uuid.uuid4().hex, ENGINE_INPUTS[0], SAMPLING_PARAMS)
engine.add_request(uuid.uuid4().hex, ENGINE_INPUTS[1], SAMPLING_PARAMS)
outputs = []
count = 0
while True:
out = engine.step()
count += 1
for request_output in out:
if request_output.finished:
outputs.append(request_output)
if count == 2:
engine.add_request(uuid.uuid4().hex, ENGINE_INPUTS[2],
SAMPLING_PARAMS)
if not engine.has_unfinished_requests():
break
logprobs = vllm_runner._final_steps_generate_w_logprobs(outputs)
check_logprobs_close(outputs_0_lst=EXPECTED_ENGINE_LOGPROBS,
outputs_1_lst=logprobs,
name_0="h100_ref",
name_1="output")