vllm/tests/kernels/test_moe.py

566 lines
21 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
"""Tests for the MOE layers.
Run `pytest tests/kernels/test_moe.py`.
"""
import pytest
import torch
from torch.nn import Parameter
from torch.nn import functional as F
from transformers import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
import vllm.model_executor.layers.fused_moe # noqa
from tests.kernels.utils import (opcheck, stack_and_dev, torch_moe,
torch_moe_single)
2024-03-25 23:59:47 +09:00
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
from vllm.model_executor.layers.fused_moe.moe_torch_iterative import (
fused_moe as iterative_moe)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
awq_marlin_quantize, marlin_quantize)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
quantize_weights)
from vllm.model_executor.models.mixtral import MixtralMoE
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
NUM_EXPERTS = [8, 64]
EP_SIZE = [1, 4]
TOP_KS = [2, 6]
@pytest.mark.parametrize("m", [1, 33, 64, 222, 1024 * 128])
@pytest.mark.parametrize("n", [128, 1024, 2048])
@pytest.mark.parametrize("k", [128, 511, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("ep_size", EP_SIZE)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("padding", [True, False])
def test_fused_moe(
m: int,
n: int,
k: int,
e: int,
topk: int,
ep_size: int,
dtype: torch.dtype,
padding: bool,
):
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
score = torch.randn((m, e), device="cuda", dtype=dtype)
if ep_size > 1:
local_e = e // ep_size
e_ids = torch.randint(0,
e, (local_e, ),
device="cuda",
dtype=torch.int32)
e_map = torch.full((e, ), -1, device="cuda", dtype=torch.int32)
e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32)
w1 = w1[e_ids]
w2 = w2[e_ids]
else:
e_map = None
torch_output = torch_moe(a, w1, w2, score, topk, e_map)
iterative_output = iterative_moe(a,
w1,
w2,
score,
topk,
global_num_experts=e,
expert_map=e_map,
renormalize=False)
# Pad the weight if moe padding is enabled
if padding:
w1 = F.pad(w1, (0, 128), "constant", 0)[..., 0:-128]
torch.cuda.empty_cache()
w2 = F.pad(w2, (0, 128), "constant", 0)[..., 0:-128]
torch.cuda.empty_cache()
triton_output = fused_moe(a,
w1,
w2,
score,
topk,
global_num_experts=e,
expert_map=e_map,
renormalize=False)
torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)
torch.testing.assert_close(iterative_output,
torch_output,
atol=2e-2,
rtol=0)
@pytest.mark.parametrize("m", [1, 32, 222])
@pytest.mark.parametrize("n", [128, 1024, 2048])
@pytest.mark.parametrize("k", [128, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("ep_size", EP_SIZE)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("group_size", [64, 128])
@pytest.mark.parametrize("has_zp", [True, False])
@pytest.mark.parametrize("weight_bits", [4, 8])
def test_fused_moe_wn16(m: int, n: int, k: int, e: int, topk: int,
ep_size: int, dtype: torch.dtype, group_size: int,
has_zp: bool, weight_bits: int):
print(m, n, k, e, topk, dtype, group_size, has_zp, weight_bits)
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
score = torch.randn((m, e), device="cuda", dtype=dtype)
if weight_bits == 4:
pack_factor = 2
quant_type = scalar_types.uint4 if has_zp else scalar_types.uint4b8
elif weight_bits == 8:
pack_factor = 1
quant_type = scalar_types.uint8 if has_zp else scalar_types.uint8b128
w1_ref = w1.clone()
w2_ref = w2.clone()
w1_qweight = torch.empty((e, 2 * n, k // pack_factor),
device="cuda",
dtype=torch.uint8)
w2_qweight = torch.empty((e, k, n // pack_factor),
device="cuda",
dtype=torch.uint8)
w1_scales = torch.empty((e, 2 * n, k // group_size),
device="cuda",
dtype=dtype)
w2_scales = torch.empty((e, k, n // group_size),
device="cuda",
dtype=dtype)
w1_qzeros = torch.empty((e, 2 * n // pack_factor, k // group_size),
device="cuda",
dtype=torch.uint8)
w2_qzeros = torch.empty((e, k // pack_factor, n // group_size),
device="cuda",
dtype=torch.uint8)
for i in range(e * 2):
expert_id = i % e
if i // e == 0:
w, w_ref, w_qweight, w_scales, w_qzeros = \
w1, w1_ref, w1_qweight, w1_scales, w1_qzeros
else:
w, w_ref, w_qweight, w_scales, w_qzeros = \
w2, w2_ref, w2_qweight, w2_scales, w2_qzeros
weight, qweight, scales, qzeros = quantize_weights(
w[expert_id].T, quant_type, group_size, has_zp, False)
weight = weight.T
qweight = qweight.T.contiguous().to(torch.uint8)
scales = scales.T
if has_zp:
qzeros = qzeros.T.contiguous().to(torch.uint8)
if weight_bits == 4:
qweight = qweight[:, 1::2] * 16 + qweight[:, ::2]
if has_zp:
qzeros = qzeros[1::2, :] * 16 + qzeros[::2, :]
w_ref[expert_id] = weight
w_qweight[expert_id] = qweight
w_scales[expert_id] = scales
if has_zp:
w_qzeros[expert_id] = qzeros
if ep_size > 1:
local_e = e // ep_size
e_ids = torch.randint(0,
e, (local_e, ),
device="cuda",
dtype=torch.int32)
e_map = torch.full((e, ), -1, device="cuda", dtype=torch.int32)
e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32)
w1_ref = w1_ref[e_ids]
w2_ref = w2_ref[e_ids]
w1_qweight = w1_qweight[e_ids]
w2_qweight = w2_qweight[e_ids]
w1_scales = w1_scales[e_ids]
w2_scales = w2_scales[e_ids]
w1_qzeros = w1_qzeros[e_ids]
w2_qzeros = w2_qzeros[e_ids]
else:
e_map = None
triton_output = fused_moe(a,
w1_qweight,
w2_qweight,
score,
topk,
renormalize=False,
use_int4_w4a16=weight_bits == 4,
use_int8_w8a16=weight_bits == 8,
global_num_experts=e,
expert_map=e_map,
w1_scale=w1_scales,
w2_scale=w2_scales,
w1_zp=w1_qzeros if has_zp else None,
w2_zp=w2_qzeros if has_zp else None,
block_shape=[0, group_size])
torch_output = torch_moe(a, w1_ref, w2_ref, score, topk, e_map)
torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)
@pytest.mark.parametrize("dtype",
[torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("padding", [True, False])
@pytest.mark.parametrize(
"use_rocm_aiter", [True, False] if current_platform.is_rocm() else [False])
@torch.inference_mode()
def test_mixtral_moe(dtype: torch.dtype, padding: bool, use_rocm_aiter: bool,
monkeypatch):
"""Make sure our Mixtral MoE implementation agrees with the one from
huggingface."""
if use_rocm_aiter:
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
# Instantiate our and huggingface's MoE blocks
config = MixtralConfig()
hf_moe = MixtralSparseMoeBlock(config).to(dtype).to("cuda")
vllm_moe = MixtralMoE(
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
params_dtype=dtype,
tp_size=1,
2025-03-05 00:27:26 -05:00
dp_size=1,
).cuda()
# Load the weights
vllm_moe.gate.weight.data[:] = hf_moe.gate.weight.data
for i in range(config.num_local_experts):
weights = (hf_moe.experts[i].w1.weight.data,
hf_moe.experts[i].w3.weight.data)
vllm_moe.experts.w13_weight[i][:] = torch.cat(weights, dim=0)
vllm_moe.experts.w2_weight[i][:] = hf_moe.experts[i].w2.weight.data
# Generate input batch of dimensions [batch_size, seq_len, hidden_dim]
hf_inputs = torch.randn((1, 64, config.hidden_size)).to(dtype).to("cuda")
# vLLM uses 1D query [num_tokens, hidden_dim]
vllm_inputs = hf_inputs.flatten(0, 1)
# Pad the weight if moe padding is enabled
if padding:
vllm_moe.experts.w13_weight = Parameter(F.pad(
vllm_moe.experts.w13_weight, (0, 128), "constant", 0)[..., 0:-128],
requires_grad=False)
torch.cuda.empty_cache()
vllm_moe.experts.w2_weight = Parameter(F.pad(
vllm_moe.experts.w2_weight, (0, 128), "constant", 0)[..., 0:-128],
requires_grad=False)
torch.cuda.empty_cache()
# Run forward passes for both MoE blocks
hf_states, _ = hf_moe.forward(hf_inputs)
vllm_states = vllm_moe.forward(vllm_inputs)
mixtral_moe_tol = {
torch.float32: 1e-3,
torch.float16: 1e-3,
torch.bfloat16: 1e-2,
}
if use_rocm_aiter:
# The values of rtol and atol are set based on the tests in ROCM AITER package. # noqa: E501
# https://github.com/ROCm/aiter/blob/dfed377f4be7da96ca2d75ac0761f569676f7240/op_tests/test_moe.py#L174 # noqa: E501
torch.testing.assert_close(hf_states.flatten(0, 1),
vllm_states,
rtol=0.01,
atol=100)
else:
torch.testing.assert_close(hf_states.flatten(0, 1),
vllm_states,
rtol=mixtral_moe_tol[dtype],
atol=mixtral_moe_tol[dtype])
@pytest.mark.parametrize("m", [1, 33, 123])
@pytest.mark.parametrize("n", [128, 1024])
@pytest.mark.parametrize("k", [256, 2048])
@pytest.mark.parametrize("e", [4, 12])
@pytest.mark.parametrize("topk", [2, 3])
@pytest.mark.parametrize("ep_size", [1, 4])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("group_size", [-1, 32, 128])
@pytest.mark.parametrize("act_order", [True, False])
@pytest.mark.parametrize("num_bits", [4, 8])
@pytest.mark.parametrize("has_zp", [True, False])
@pytest.mark.parametrize("is_k_full", [True, False])
@pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm")
def test_fused_marlin_moe(
m: int,
n: int,
k: int,
e: int,
topk: int,
ep_size: int,
dtype: torch.dtype,
group_size: int,
act_order: bool,
num_bits: int,
has_zp: bool,
is_k_full: bool,
):
current_platform.seed_everything(7)
# Filter act_order
if act_order:
if group_size == -1:
return
if group_size in (k, n):
return
if has_zp:
return
else:
if not is_k_full:
return
if has_zp:
# we don't build kernel for int8 with zero
if num_bits == 8:
return
quant_type = scalar_types.uint4 if num_bits == 4 else scalar_types.uint8
else:
quant_type = scalar_types.uint4b8 \
if num_bits == 4 else scalar_types.uint8b128
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
if ep_size > 1:
local_e = e // ep_size
e_ids = torch.randperm(e, device="cuda", dtype=torch.int32)[:local_e]
e_map = torch.full((e, ), -1, device="cuda", dtype=torch.int32)
e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32)
w1 = w1[e_ids]
w2 = w2[e_ids]
else:
e_map = None
w_ref1_l = []
qweight1_l = []
scales1_l = []
zeros1_l = []
g_idx1_l = []
sort_indices1_l = []
for i in range(w1.shape[0]):
if has_zp:
w_ref1, qweight1, scales1, zeros1 = awq_marlin_quantize(
w1[i].transpose(1, 0), quant_type, group_size)
w_ref1_l.append(w_ref1.T)
qweight1_l.append(qweight1)
scales1_l.append(scales1)
zeros1_l.append(zeros1)
else:
test_perm = torch.randperm(k)
quant_res = marlin_quantize(w1[i].transpose(1, 0), quant_type,
group_size, act_order, test_perm)
w_ref1, qweight1, scales1, g_idx1, sort_indices1, _ = quant_res
w_ref1_l.append(w_ref1.T)
qweight1_l.append(qweight1)
scales1_l.append(scales1)
g_idx1_l.append(g_idx1)
sort_indices1_l.append(sort_indices1)
w_ref1 = stack_and_dev(w_ref1_l)
qweight1 = stack_and_dev(qweight1_l).contiguous()
scales1 = stack_and_dev(scales1_l)
g_idx1 = stack_and_dev(g_idx1_l) if g_idx1_l else None
zeros1 = stack_and_dev(zeros1_l) if zeros1_l else None
sort_indices1 = stack_and_dev(sort_indices1_l) if sort_indices1_l else None
w_ref2_l = []
qweight2_l = []
scales2_l = []
zeros2_l = []
g_idx2_l = []
sort_indices2_l = []
for i in range(w2.shape[0]):
if has_zp:
w_ref2, qweight2, scales2, zeros2 = awq_marlin_quantize(
w2[i].transpose(1, 0), quant_type, group_size)
w_ref2_l.append(w_ref2.T)
qweight2_l.append(qweight2)
scales2_l.append(scales2)
zeros2_l.append(zeros2)
else:
test_perm = torch.randperm(n)
quant_res = marlin_quantize(w2[i].transpose(1, 0), quant_type,
group_size, act_order, test_perm)
w_ref2, qweight2, scales2, g_idx2, sort_indices2, _ = quant_res
w_ref2_l.append(w_ref2.T)
qweight2_l.append(qweight2)
scales2_l.append(scales2)
g_idx2_l.append(g_idx2)
sort_indices2_l.append(sort_indices2)
w_ref2 = stack_and_dev(w_ref2_l)
qweight2 = stack_and_dev(qweight2_l).contiguous()
scales2 = stack_and_dev(scales2_l)
g_idx2 = stack_and_dev(g_idx2_l) if g_idx2_l else None
zeros2 = stack_and_dev(zeros2_l) if zeros2_l else None
sort_indices2 = stack_and_dev(sort_indices2_l) if sort_indices2_l else None
score = torch.randn((m, e), device="cuda", dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, False)
torch_output = torch_moe(a, w_ref1, w_ref2, score, topk, e_map)
marlin_output = torch.ops.vllm.fused_marlin_moe(
a,
qweight1,
qweight2,
scales1,
scales2,
score,
topk_weights,
topk_ids,
global_num_experts=e,
expert_map=e_map,
g_idx1=g_idx1,
g_idx2=g_idx2,
sort_indices1=sort_indices1,
sort_indices2=sort_indices2,
w1_zeros=zeros1,
w2_zeros=zeros2,
num_bits=num_bits,
is_k_full=is_k_full)
torch.testing.assert_close(marlin_output, torch_output, atol=2e-2, rtol=0)
@pytest.mark.skip("This test is here for the sake of debugging, "
"don't run it in automated tests.")
@pytest.mark.parametrize("m", [1, 33, 123])
@pytest.mark.parametrize("n", [128, 1024])
@pytest.mark.parametrize("k", [256, 2048])
@pytest.mark.parametrize("e", [4, 12])
@pytest.mark.parametrize("topk", [2, 3])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("group_size", [-1, 32, 128])
@pytest.mark.parametrize("act_order", [True, False])
@pytest.mark.parametrize("num_bits", [4, 8])
@pytest.mark.parametrize("has_zp", [True, False])
@pytest.mark.parametrize("is_k_full", [True, False])
def test_single_marlin_moe_multiply(m: int, n: int, k: int, e: int, topk: int,
dtype: torch.dtype, group_size: int,
act_order: bool, num_bits: int,
has_zp: bool, is_k_full: bool):
# Filter act_order
if act_order:
if group_size == -1:
return
if group_size in (k, n):
return
if has_zp:
return
else:
if not is_k_full:
return
if has_zp:
quant_type = scalar_types.uint4 if num_bits == 4 else scalar_types.uint8
else:
quant_type = scalar_types.uint4b8 \
if num_bits == 4 else scalar_types.uint8b128
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w = torch.randn((e, n, k), device="cuda", dtype=dtype) / 10
w_ref_l = []
qweight_l = []
scales_l = []
zeros_l = []
g_idx_l = []
sort_indices_l = []
for i in range(w.shape[0]):
if has_zp:
w_ref, qweight, scales, zeros = awq_marlin_quantize(
w[i].transpose(1, 0), quant_type, group_size)
w_ref_l.append(w_ref.T)
qweight_l.append(qweight)
scales_l.append(scales)
zeros_l.append(zeros)
else:
test_perm = torch.randperm(k)
w_ref, qweight, scales, g_idx, sort_indices, _ = marlin_quantize(
w[i].transpose(1, 0), quant_type, group_size, act_order,
test_perm)
w_ref_l.append(w_ref.T)
qweight_l.append(qweight)
scales_l.append(scales)
g_idx_l.append(g_idx)
sort_indices_l.append(sort_indices)
w_ref = stack_and_dev(w_ref_l)
qweight = stack_and_dev(qweight_l).contiguous()
scales = stack_and_dev(scales_l)
g_idx = stack_and_dev(g_idx_l) if g_idx_l else None
zeros = stack_and_dev(zeros_l) if zeros_l else None
sort_indices = stack_and_dev(sort_indices_l) if sort_indices_l else None
score = torch.randn((m, e), device="cuda", dtype=dtype)
marlin_output = torch.ops.vllm.single_marlin_moe(
a,
qweight,
scales,
score,
topk,
renormalize=False,
g_idx=g_idx,
sort_indices=sort_indices,
w_zeros=zeros,
num_bits=num_bits,
is_k_full=is_k_full,
)
torch_output = torch_moe_single(a, w_ref, score, topk)
torch.testing.assert_close(marlin_output, torch_output, atol=2e-2, rtol=0)
def test_moe_align_block_size_opcheck():
num_experts = 4
block_size = 4
topk_ids = torch.randint(0,
num_experts, (3, 4),
dtype=torch.int32,
device='cuda')
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids = torch.empty((max_num_tokens_padded, ),
dtype=torch.int32,
device=topk_ids.device)
sorted_ids.fill_(topk_ids.numel())
max_num_m_blocks = max_num_tokens_padded // block_size
expert_ids = torch.empty((max_num_m_blocks, ),
dtype=torch.int32,
device=topk_ids.device)
num_tokens_post_pad = torch.empty((1),
dtype=torch.int32,
device=topk_ids.device)
opcheck(torch.ops._moe_C.moe_align_block_size,
(topk_ids, num_experts, block_size, sorted_ids, expert_ids,
num_tokens_post_pad))