928 lines
39 KiB
Plaintext
Raw Normal View History

/*
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Adapted from https://github.com/IST-DASLab/marlin
*/
#ifndef MARLIN_NAMESPACE_NAME
#define MARLIN_NAMESPACE_NAME marlin_moe_wna16
#endif
#include "kernel.h"
#include "core/registration.h"
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
static_assert(std::is_same<scalar_t, half>::value || \
std::is_same<scalar_t, nv_bfloat16>::value, \
"only float16 and bfloat16 is supported");
namespace MARLIN_NAMESPACE_NAME {
__global__ void MarlinDefault(MARLIN_KERNEL_PARAMS){};
using MarlinFuncPtr = void (*)(MARLIN_KERNEL_PARAMS);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
template <int moe_block_size>
__global__ void permute_cols_kernel(
int4 const* __restrict__ a_int4_ptr, int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr,
const int32_t* __restrict__ sorted_token_ids_ptr,
const int32_t* __restrict__ expert_ids_ptr,
const int32_t* __restrict__ num_tokens_past_padded_ptr, int size_m,
int size_k, int top_k) {};
} // namespace marlin
torch::Tensor moe_wna16_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
torch::Tensor& sorted_token_ids, torch::Tensor& expert_ids,
torch::Tensor& num_tokens_past_padded, torch::Tensor& topk_weights,
int64_t moe_block_size, int64_t top_k, bool mul_topk_weights, bool is_ep,
vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
TORCH_CHECK_NOT_IMPLEMENTED(false,
"marlin_gemm(..) requires CUDA_ARCH >= 8.0");
return torch::empty({1, 1});
}
#else
// For a given "a" of size [M,K] performs a permutation of the K columns based
// on the given "perm" indices.
template <int moe_block_size>
__global__ void permute_cols_kernel(
int4 const* __restrict__ a_int4_ptr, int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr,
const int32_t* __restrict__ sorted_token_ids_ptr,
const int32_t* __restrict__ expert_ids_ptr,
const int32_t* __restrict__ num_tokens_past_padded_ptr, int size_m,
int size_k, int top_k) {
int num_tokens_past_padded = num_tokens_past_padded_ptr[0];
int num_moe_blocks = div_ceil(num_tokens_past_padded, moe_block_size);
int32_t block_sorted_ids[moe_block_size];
int block_num_valid_tokens = 0;
int64_t old_expert_id = 0;
int64_t expert_id = 0;
int row_stride = size_k * sizeof(half) / 16;
auto read_moe_block_data = [&](int block_id) {
block_num_valid_tokens = moe_block_size;
int4* tmp_block_sorted_ids = reinterpret_cast<int4*>(block_sorted_ids);
for (int i = 0; i < moe_block_size / 4; i++) {
tmp_block_sorted_ids[i] =
((int4*)sorted_token_ids_ptr)[block_id * moe_block_size / 4 + i];
}
for (int i = 0; i < moe_block_size; i++) {
if (block_sorted_ids[i] >= size_m * top_k) {
block_num_valid_tokens = i;
break;
};
}
};
auto permute_row = [&](int row) {
int iters = size_k / default_threads;
int rest = size_k % default_threads;
int in_offset = (row / top_k) * row_stride;
int out_offset = row * row_stride;
half const* a_row_half =
reinterpret_cast<half const*>(a_int4_ptr + in_offset);
half* out_half = reinterpret_cast<half*>(out_int4_ptr + out_offset);
int base_k = 0;
for (int i = 0; i < iters; i++) {
int cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
base_k += default_threads;
}
if (rest) {
if (threadIdx.x < rest) {
int cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
}
}
};
for (int index = blockIdx.x; index < num_moe_blocks; index += gridDim.x) {
old_expert_id = expert_id;
int tmp_expert_id = expert_ids_ptr[index];
if (tmp_expert_id == -1) continue;
expert_id = tmp_expert_id;
perm_int_ptr += (expert_id - old_expert_id) * size_k;
read_moe_block_data(index);
for (int i = 0; i < block_num_valid_tokens; i++)
permute_row(block_sorted_ids[i]);
}
}
typedef struct {
int thread_k;
int thread_n;
int num_threads;
} thread_config_t;
thread_config_t small_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{128, 128, 256},
{64, 128, 128}};
thread_config_t large_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{64, 256, 256},
{64, 128, 128}};
typedef struct {
int blocks_per_sm;
thread_config_t tb_cfg;
} exec_config_t;
int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
int prob_n, int prob_k, int num_bits, int group_size,
bool has_act_order, bool is_k_full) {
bool cache_scales_chunk = has_act_order && !is_k_full;
int tb_n = th_config.thread_n;
int tb_k = th_config.thread_k;
// Get max scale groups per thread-block
int tb_groups;
if (group_size == -1) {
tb_groups = 1;
} else if (group_size == 0) {
tb_groups = div_ceil(tb_k, 32); // Worst case is 32 group size
} else {
tb_groups = div_ceil(tb_k, group_size);
}
if (cache_scales_chunk) {
int load_groups =
tb_groups * pipe_stages * 2; // Chunk size is 2x pipeline over dim K
load_groups = max(load_groups, 32); // We load at least 32 scale groups
return load_groups * tb_n * 2;
} else {
int tb_scales = tb_groups * tb_n * 2;
return tb_scales * pipe_stages;
}
}
int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int has_zp, int is_zp_float) {
int pack_factor = 32 / num_bits;
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int tb_m = thread_m_blocks * 16;
// shm size for block_sorted_ids/block_topk_weights
// both of them requires tb_m * 4 bytes (tb_m * int32 or tb_m * float32)
int sh_block_meta_size = tb_m * 4 * 2;
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
int sh_s_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
int sh_g_idx_size = has_act_order && !is_k_full ? pipe_stages * tb_k / 4 : 0;
int sh_zp_size = 0;
if (has_zp) {
if (is_zp_float)
sh_zp_size = sh_s_size;
else if (num_bits == 4)
sh_zp_size = sh_s_size / 4;
else if (num_bits == 8)
sh_zp_size = sh_s_size / 2;
}
int total_size = sh_a_size + sh_b_size + sh_s_size + sh_zp_size +
sh_g_idx_size + sh_block_meta_size;
return total_size;
}
bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int has_zp, int is_zp_float, int max_shared_mem) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
return false;
}
// Verify K/N are divisible by thread K/N
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
return false;
}
// Verify min for thread K/N
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
return false;
}
// num_threads must be at least 128 (= 4 warps)
if (th_config.num_threads < 128) {
return false;
}
// Check that pipeline fits into cache
int cache_size = get_kernel_cache_size(
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, has_zp, is_zp_float);
return cache_size <= max_shared_mem;
}
#define __GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
M_BLOCK_SIZE_8, HAS_ACT_ORDER, HAS_ZP, GROUP_BLOCKS, \
NUM_THREADS, IS_ZP_FLOAT) \
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
thread_n_blocks == THREAD_N_BLOCKS && \
thread_k_blocks == THREAD_K_BLOCKS && \
m_block_size_8 == M_BLOCK_SIZE_8 && \
has_act_order == HAS_ACT_ORDER && has_zp == HAS_ZP && \
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
is_zp_float == IS_ZP_FLOAT) { \
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
pipe_stages, HAS_ACT_ORDER, HAS_ZP, GROUP_BLOCKS, \
IS_ZP_FLOAT>; \
}
#define GPTQ_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, true, false, 0, NUM_THREADS, \
false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, true, false, 0, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, false, 8, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, false, 8, \
NUM_THREADS, false)
#define GPTQ_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, true, false, 0, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, true, false, 0, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, true, false, 0, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, false, 8, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, false, 8, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, false, 8, \
NUM_THREADS, false)
#define AWQ_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, 2, NUM_THREADS, \
false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, 4, NUM_THREADS, \
false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, 8, NUM_THREADS, \
false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, 8, \
NUM_THREADS, false)
#define AWQ_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, 8, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, 8, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, 8, \
NUM_THREADS, false)
// We currently have 4-bit models only with group_blocks == 4
#define HQQ_GET_IF(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, 4, NUM_THREADS, \
true) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, true) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, true) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, true) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, true)
template <typename scalar_t>
MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
int thread_m_blocks, int thread_n_blocks,
int thread_k_blocks, bool m_block_size_8,
bool has_act_order, bool has_zp,
int group_blocks, int num_threads,
bool is_zp_float) {
int num_bits = q_type.size_bits();
auto kernel = MarlinDefault;
if (false) {
}
GPTQ_GET_IF_M1(vllm::kU4B8, 8, 8, 256)
GPTQ_GET_IF_M1(vllm::kU4B8, 8, 4, 128)
GPTQ_GET_IF_M234(vllm::kU4B8, 16, 4, 256)
GPTQ_GET_IF_M234(vllm::kU4B8, 8, 4, 128)
GPTQ_GET_IF_M1(vllm::kU8B128, 8, 8, 256)
GPTQ_GET_IF_M1(vllm::kU8B128, 8, 4, 128)
GPTQ_GET_IF_M234(vllm::kU8B128, 16, 4, 256)
GPTQ_GET_IF_M234(vllm::kU8B128, 8, 4, 128)
AWQ_GET_IF_M1(vllm::kU4, 8, 8, 256)
AWQ_GET_IF_M1(vllm::kU4, 8, 4, 128)
AWQ_GET_IF_M234(vllm::kU4, 16, 4, 256)
AWQ_GET_IF_M234(vllm::kU4, 8, 4, 128)
return kernel;
}
template <typename scalar_t>
exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
int prob_n, int prob_k, int thread_m_blocks,
bool m_block_size_8, int num_bits,
int group_size, bool has_act_order,
bool is_k_full, bool has_zp,
bool is_zp_float, int max_shared_mem) {
exec_config_t exec_cfg = exec_config_t{1, thread_config_t{-1, -1, -1}};
thread_config_t* thread_configs = thread_m_blocks > 1
? large_batch_thread_configs
: small_batch_thread_configs;
int thread_configs_size =
thread_m_blocks > 1
? sizeof(large_batch_thread_configs) / sizeof(thread_config_t)
: sizeof(small_batch_thread_configs) / sizeof(thread_config_t);
int count = 0;
constexpr int device_max_reg_size = 255 * 1024;
for (int i = 0; i < thread_configs_size; i++) {
thread_config_t th_config = thread_configs[i];
if (!is_valid_config(th_config, thread_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full, has_zp,
is_zp_float, max_shared_mem)) {
continue;
}
int cache_size = get_kernel_cache_size(
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full, has_zp, is_zp_float);
int group_blocks = 0;
if (!has_act_order) {
group_blocks = group_size == -1 ? -1 : group_size / 16;
}
auto kernel = get_marlin_kernel<scalar_t>(
q_type, thread_m_blocks, th_config.thread_n / 16,
th_config.thread_k / 16, m_block_size_8, has_act_order, has_zp,
group_blocks, th_config.num_threads, is_zp_float);
if (kernel == MarlinDefault) continue;
if (thread_m_blocks > 1) {
exec_cfg = {1, th_config};
break;
} else {
cudaFuncAttributes attr;
cudaFuncGetAttributes(&attr, kernel);
int reg_size = max(attr.numRegs, 1) * th_config.num_threads * 4;
int allow_count = min(device_max_reg_size / reg_size,
max_shared_mem / (cache_size + 1024));
allow_count = max(min(allow_count, 4), 1);
if (allow_count > count) {
count = allow_count;
exec_cfg = {count, th_config};
};
}
}
return exec_cfg;
}
template <typename scalar_t>
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
void* zp, void* g_idx, void* perm, void* a_tmp,
void* sorted_token_ids, void* expert_ids,
void* num_tokens_past_padded, void* topk_weights,
int moe_block_size, int top_k, bool mul_topk_weights, bool is_ep,
int prob_m, int prob_n, int prob_k, void* workspace,
vllm::ScalarType const& q_type, bool has_act_order,
bool is_k_full, bool has_zp, int num_groups, int group_size,
int dev, cudaStream_t stream, int thread_k, int thread_n,
int sms, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
int thread_m_blocks = div_ceil(moe_block_size, 16);
bool m_block_size_8 = moe_block_size == 8;
if (has_zp) {
TORCH_CHECK(
q_type == vllm::kU4 || q_type == vllm::kU8,
"q_type must be u4 or u8 when has_zp = True. Got = ", q_type.str());
} else {
TORCH_CHECK(
q_type == vllm::kU4B8 || q_type == vllm::kU8B128,
"q_type must be uint4b8 or uint8b128 when has_zp = False. Got = ",
q_type.str());
}
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
", ", prob_n, ", ", prob_k, "]");
int group_blocks = 0;
if (has_act_order) {
if (is_k_full) {
TORCH_CHECK(group_size != -1);
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
} else {
TORCH_CHECK(group_size == 0);
group_blocks = 0;
}
} else {
if (group_size == -1) {
group_blocks = -1;
} else {
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
}
}
int num_bits = q_type.size_bits();
const int4* A_ptr = (const int4*)A;
const int4* B_ptr = (const int4*)B;
int4* C_ptr = (int4*)C;
int4* C_tmp_ptr = (int4*)C_tmp;
const int4* s_ptr = (const int4*)s;
const int4* zp_ptr = (const int4*)zp;
const int* g_idx_ptr = (const int*)g_idx;
const int* perm_ptr = (const int*)perm;
int4* a_tmp_ptr = (int4*)a_tmp;
const int32_t* sorted_token_ids_ptr = (const int32_t*)sorted_token_ids;
const int32_t* expert_ids_ptr = (const int32_t*)expert_ids;
const int32_t* num_tokens_past_padded_ptr =
(const int32_t*)num_tokens_past_padded;
const float* topk_weights_ptr = (const float*)topk_weights;
int* locks = (int*)workspace;
if (has_act_order) {
// Permute A columns
auto kernel = permute_cols_kernel<8>;
if (moe_block_size == 8) {
} else if (moe_block_size == 16)
kernel = permute_cols_kernel<16>;
else if (moe_block_size == 32)
kernel = permute_cols_kernel<32>;
else if (moe_block_size == 48)
kernel = permute_cols_kernel<48>;
else if (moe_block_size == 64)
kernel = permute_cols_kernel<64>;
else
TORCH_CHECK(false, "unsupported moe_block_size ", moe_block_size);
// avoid ">>>" being formatted to "> > >"
// clang-format off
kernel<<<sms, default_threads, 0, stream>>>(
A_ptr, perm_ptr, a_tmp_ptr, sorted_token_ids_ptr, expert_ids_ptr,
num_tokens_past_padded_ptr, prob_m, prob_k, top_k);
// clang-format on
A_ptr = a_tmp_ptr;
prob_m = prob_m * top_k;
top_k = 1;
// If we have a full K, then we can run the non-act-order version of Marlin
// (since the weight rows are reordered by increasing group ids, and by
// having a full K, we have full original groups)
if (is_k_full) has_act_order = false;
}
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
// Set thread config
exec_config_t exec_cfg;
thread_config_t thread_tfg;
if (thread_k != -1 && thread_n != -1) {
thread_tfg = thread_config_t{thread_k, thread_n, default_threads};
exec_cfg = exec_config_t{1, thread_tfg};
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
" is not divisible by thread_n = ", thread_n);
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
" is not divisible by thread_k = ", thread_k);
} else {
// Auto config
exec_cfg = determine_exec_config<scalar_t>(
q_type, prob_m, prob_n, prob_k, thread_m_blocks, m_block_size_8,
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float,
max_shared_mem);
thread_tfg = exec_cfg.tb_cfg;
}
int num_threads = thread_tfg.num_threads;
thread_k = thread_tfg.thread_k;
thread_n = thread_tfg.thread_n;
int blocks = sms * exec_cfg.blocks_per_sm;
if (exec_cfg.blocks_per_sm > 1)
max_shared_mem = max_shared_mem / exec_cfg.blocks_per_sm - 1024;
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
TORCH_CHECK(is_valid_config(thread_tfg, thread_m_blocks, prob_m, prob_n,
prob_k, num_bits, group_size, has_act_order,
is_k_full, has_zp, is_zp_float, max_shared_mem),
"Invalid thread config: thread_m_blocks = ", thread_m_blocks,
", thread_k = ", thread_tfg.thread_k,
", thread_n = ", thread_tfg.thread_n,
", num_threads = ", thread_tfg.num_threads, " for MKN = [",
prob_m, ", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", group_size = ", group_size,
", has_act_order = ", has_act_order, ", is_k_full = ", is_k_full,
", has_zp = ", has_zp, ", is_zp_float = ", is_zp_float,
", max_shared_mem = ", max_shared_mem);
auto kernel = get_marlin_kernel<scalar_t>(
q_type, thread_m_blocks, thread_n_blocks, thread_k_blocks, m_block_size_8,
has_act_order, has_zp, group_blocks, num_threads, is_zp_float);
if (kernel == MarlinDefault) {
TORCH_CHECK(false, "Unsupported shapes: MNK = [", prob_m, ", ", prob_n,
", ", prob_k, "]", ", has_act_order = ", has_act_order,
", num_groups = ", num_groups, ", group_size = ", group_size,
", thread_m_blocks = ", thread_m_blocks,
", thread_n_blocks = ", thread_n_blocks,
", thread_k_blocks = ", thread_k_blocks,
", num_bits = ", num_bits);
}
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
max_shared_mem);
// avoid ">>>" being formatted to "> > >"
// clang-format off
kernel<<<blocks, num_threads, max_shared_mem, stream>>>(
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, zp_ptr, g_idx_ptr,
sorted_token_ids_ptr, expert_ids_ptr, num_tokens_past_padded_ptr,
topk_weights_ptr, top_k, mul_topk_weights, is_ep, num_groups, prob_m,
prob_n, prob_k, locks, use_atomic_add, use_fp32_reduce);
// clang-format on
}
} // namespace MARLIN_NAMESPACE_NAME
torch::Tensor moe_wna16_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
torch::Tensor& sorted_token_ids, torch::Tensor& expert_ids,
torch::Tensor& num_tokens_past_padded, torch::Tensor& topk_weights,
int64_t moe_block_size, int64_t top_k, bool mul_topk_weights, bool is_ep,
vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id);
int pack_factor = 32 / b_q_type.size_bits();
if (moe_block_size != 8) {
TORCH_CHECK(moe_block_size % 16 == 0,
"unsupported moe_block_size=", moe_block_size);
TORCH_CHECK(moe_block_size >= 16 && moe_block_size <= 64,
"unsupported moe_block_size=", moe_block_size);
}
// Verify A
TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0),
", size_m = ", size_m);
TORCH_CHECK(a.size(1) == size_k, "Shape mismatch: a.size(1) = ", a.size(1),
", size_k = ", size_k);
// Verify B
TORCH_CHECK(
size_k % MARLIN_NAMESPACE_NAME::tile_size == 0, "size_k = ", size_k,
" is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
TORCH_CHECK((size_k / MARLIN_NAMESPACE_NAME::tile_size) == b_q_weight.size(1),
"Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1),
", size_k = ", size_k,
", tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
TORCH_CHECK(
b_q_weight.size(2) % MARLIN_NAMESPACE_NAME::tile_size == 0,
"b_q_weight.size(2) = ", b_q_weight.size(2),
" is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
int actual_size_n =
(b_q_weight.size(2) / MARLIN_NAMESPACE_NAME::tile_size) * pack_factor;
TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
", actual_size_n = ", actual_size_n);
// Verify device and strides
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
TORCH_CHECK(a.is_contiguous(), "A is not contiguous");
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_k = -1;
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_n = -1;
// sms: number of SMs to use for the kernel
int sms = -1;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
// Alloc buffers
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
torch::Tensor c;
if (c_or_none.has_value()) {
c = c_or_none.value();
TORCH_CHECK(c.device().is_cuda(), "c is not on GPU");
TORCH_CHECK(c.is_contiguous(), "c is not contiguous");
TORCH_CHECK(c.size(0) == size_m * top_k,
"Shape mismatch: c.size(0) = ", c.size(0),
", size_m * topk = ", size_m * top_k);
TORCH_CHECK(c.size(1) == size_n, "Shape mismatch: c.size(1) = ", c.size(1),
", size_n = ", size_n);
} else {
c = torch::empty({size_m * top_k, size_n}, options);
}
// Alloc C tmp buffer that is going to be used for the global reduce
torch::Tensor c_tmp;
auto options_fp32 =
torch::TensorOptions().dtype(at::kFloat).device(a.device());
if (use_fp32_reduce && !use_atomic_add) {
// max num of threadblocks is sms * 4
long max_c_tmp_size = min(
(long)size_n * sorted_token_ids.size(0),
(long)sms * 4 * moe_block_size * MARLIN_NAMESPACE_NAME::max_thread_n);
if (moe_block_size == 8) max_c_tmp_size *= 2;
c_tmp = torch::empty({max_c_tmp_size}, options_fp32);
} else {
c_tmp = torch::empty({0}, options_fp32);
}
// Detect groupsize and act_order
int num_groups = -1;
int group_size = -1;
int rank = b_scales.sizes().size();
TORCH_CHECK(rank == 3, "b_scales rank = ", rank, " is not 3");
TORCH_CHECK(b_scales.size(2) == size_n, "b_scales dim 2 = ", b_scales.size(2),
" is not size_n = ", size_n);
num_groups = b_scales.size(1);
torch::Tensor g_idx, perm, a_tmp;
;
if (g_idx_or_none.has_value() && perm_or_none.has_value()) {
g_idx = g_idx_or_none.value();
perm = perm_or_none.value();
TORCH_CHECK(g_idx.device().is_cuda(), "g_idx is not on GPU");
TORCH_CHECK(g_idx.is_contiguous(), "g_idx is not contiguous");
TORCH_CHECK(perm.device().is_cuda(), "perm is not on GPU");
TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous");
// Verify g_idx and perm
TORCH_CHECK((g_idx.size(-1) == 0 && perm.size(-1) == 0) ||
(g_idx.size(-1) == size_k && perm.size(-1) == size_k),
"Unexpected g_idx.size(-1) = ", g_idx.size(-1),
" and perm.size(-1) = ", perm.size(-1),
", where size_k = ", size_k);
} else {
g_idx = torch::empty({0}, options);
perm = torch::empty({0}, options);
a_tmp = torch::empty({0}, options);
}
bool has_act_order = g_idx.size(-1) > 0 && perm.size(-1) > 0;
if (has_act_order) {
a_tmp = torch::empty({size_m * top_k, size_k}, options);
if (is_k_full) {
TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1");
TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by num_groups = ", num_groups);
group_size = size_k / num_groups;
} else {
group_size = 0;
}
} else {
a_tmp = torch::empty({0}, options);
if (num_groups > 1) {
TORCH_CHECK(
size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by b_scales.size(1) = ", b_scales.size(1));
group_size = size_k / num_groups;
} else {
group_size = -1;
}
}
torch::Tensor b_zeros;
if (b_zeros_or_none.has_value()) {
b_zeros = b_zeros_or_none.value();
TORCH_CHECK(b_zeros.device().is_cuda(), "b_zeros is not on GPU");
TORCH_CHECK(b_zeros.is_contiguous(), "b_zeros is not contiguous");
} else {
b_zeros = torch::empty({0}, options);
}
bool has_zp = b_zeros.size(-1) > 0;
if (has_zp) {
TORCH_CHECK(
b_q_type == vllm::kU4,
"b_q_type must be u4 when has_zp = True. Got = ", b_q_type.str());
} else {
TORCH_CHECK(
b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128,
"b_q_type must be uint4b8 or uint8b128 when has_zp = False. Got = ",
b_q_type.str());
}
if (has_zp && is_zp_float) {
TORCH_CHECK(a.scalar_type() == at::ScalarType::Half,
"Computation type must be float16 (half) when using float zero "
"points.");
}
// Verify b_zeros
if (has_zp) {
int rank = b_zeros.sizes().size();
TORCH_CHECK(rank == 3, "b_zeros rank = ", rank, " is not 3");
if (is_zp_float) {
TORCH_CHECK(b_zeros.size(2) == size_n,
"b_zeros dim 2 = ", b_zeros.size(2),
" is not size_n = ", size_n);
TORCH_CHECK(num_groups == b_zeros.size(1),
"b_zeros dim 1 = ", b_zeros.size(1),
" is not num_groups = ", num_groups);
TORCH_CHECK(num_groups != -1, "num_groups must be != -1");
} else {
TORCH_CHECK(b_zeros.size(1) == num_groups,
"b_zeros dim 1 = ", b_zeros.size(1),
" is not num_groups = ", num_groups);
TORCH_CHECK(b_zeros.size(2) == size_n / pack_factor,
"b_zeros dim 2 = ", b_zeros.size(2),
" is not size_n / pack_factor = ", size_n / pack_factor);
}
}
// Verify workspace size
TORCH_CHECK(size_n % MARLIN_NAMESPACE_NAME::min_thread_n == 0,
"size_n = ", size_n, ", is not divisible by min_thread_n = ",
MARLIN_NAMESPACE_NAME::min_thread_n);
int max_n_tiles = size_n / MARLIN_NAMESPACE_NAME::min_thread_n;
int min_workspace_size = min(
max_n_tiles * (int)(sorted_token_ids.size(0) / moe_block_size), sms * 4);
TORCH_CHECK(workspace.numel() >= min_workspace_size,
"workspace.numel = ", workspace.numel(),
" is below min_workspace_size = ", min_workspace_size);
int dev = a.get_device();
if (a.scalar_type() == at::ScalarType::Half) {
MARLIN_NAMESPACE_NAME::marlin_mm<half>(
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
c_tmp.data_ptr<float>(), b_scales.data_ptr<at::Half>(),
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
a_tmp.data_ptr<at::Half>(), sorted_token_ids.data_ptr(),
expert_ids.data_ptr(), num_tokens_past_padded.data_ptr(),
topk_weights.data_ptr(), moe_block_size, top_k, mul_topk_weights, is_ep,
size_m, size_n, size_k, workspace.data_ptr(), b_q_type, has_act_order,
is_k_full, has_zp, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
use_atomic_add, use_fp32_reduce, is_zp_float);
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
MARLIN_NAMESPACE_NAME::marlin_mm<nv_bfloat16>(
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
b_scales.data_ptr<at::BFloat16>(), b_zeros.data_ptr(), g_idx.data_ptr(),
perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
sorted_token_ids.data_ptr(), expert_ids.data_ptr(),
num_tokens_past_padded.data_ptr(), topk_weights.data_ptr(),
moe_block_size, top_k, mul_topk_weights, is_ep, size_m, size_n, size_k,
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
thread_k, thread_n, sms, use_atomic_add, use_fp32_reduce, is_zp_float);
} else {
TORCH_CHECK(false,
"moe_wna16_marlin_gemm only supports bfloat16 and float16");
}
return c;
}
#endif
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("moe_wna16_marlin_gemm", &moe_wna16_marlin_gemm);
}