vllm/tests/v1/tpu/test_mha_attn.py

110 lines
3.3 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
"""
Test:
* Tests for MultiHeadAttention layer
"""
import pytest
import torch
import torch_xla
import torch_xla.core
import torch_xla.core.xla_model
from vllm import envs
from vllm.attention.layer import MultiHeadAttention
from vllm.attention.selector import _cached_get_attn_backend
from vllm.platforms import current_platform
if not envs.VLLM_USE_V1:
pytest.skip(
"Skipping V1 tests. Rerun with `VLLM_USE_V1=1` to test.",
allow_module_level=True,
)
@pytest.fixture(autouse=True)
def clear_cache():
"""Clear lru cache to ensure each test case runs without caching.
"""
_cached_get_attn_backend.cache_clear()
def ref_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
) -> torch.Tensor:
"""
Native implementation of scaled dot product attention without mask:
- query, key, value: [batch_size, seq_len, num_heads, head_size]
- attn_mask: [batch_size, seq_len, seq_len]
"""
query, key, value = (x.transpose(1, 2) for x in (query, key, value))
attn_weights = scale * torch.matmul(query, key.transpose(2, 3))
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.matmul(attn_weights, value).transpose(1, 2)
return out
BATCH_SIZES = [1, 16]
SEQ_LENS = [1]
NUM_HEADS = [1, 16]
NUM_KV_HEADS = [1]
HEAD_SIZES = [64, 80]
@pytest.mark.skipif(not current_platform.is_tpu(),
reason="This test needs a TPU")
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("seq_len", SEQ_LENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("num_kv_heads", NUM_KV_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("device", [torch_xla.core.xla_model.xla_device()])
def test_mha_attn_forward(
batch_size: int,
seq_len: int,
num_heads: int,
num_kv_heads: int,
head_size: int,
device: str,
):
current_platform.seed_everything(0)
# These are expected to be f32
q = torch.randn(batch_size, seq_len, num_heads * head_size, device=device)
k = torch.randn(batch_size,
seq_len,
num_kv_heads * head_size,
device=device)
v = torch.randn(batch_size,
seq_len,
num_kv_heads * head_size,
device=device)
scale = 1.0 / head_size**0.5
attn = MultiHeadAttention(num_heads,
head_size,
scale=scale,
num_kv_heads=num_kv_heads)
output = attn(q, k, v)
assert num_heads % num_kv_heads == 0
num_queries_per_kv = num_heads // num_kv_heads
q = q.reshape(batch_size, seq_len, num_heads, head_size)
k = k.reshape(batch_size, seq_len, num_kv_heads, head_size)
v = v.reshape(batch_size, seq_len, num_kv_heads, head_size)
if num_queries_per_kv > 1:
k = torch.repeat_interleave(k, num_queries_per_kv, dim=2)
v = torch.repeat_interleave(v, num_queries_per_kv, dim=2)
ref_output = ref_attention(
q,
k,
v,
scale=scale,
).reshape(batch_size, seq_len, num_heads * head_size)
# torch_xla flash_attn kernel is less accurate but much faster
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-3)