2023-02-09 11:25:37 +00:00
|
|
|
"""1D OPT model compatible with HuggingFace weights."""
|
2023-02-23 09:31:55 +00:00
|
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
|
2023-02-09 11:25:37 +00:00
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
from transformers import OPTConfig
|
|
|
|
from transformers import PreTrainedModel
|
|
|
|
|
2023-02-23 09:31:55 +00:00
|
|
|
from cacheflow.models import InputMetadata
|
|
|
|
from cacheflow.models.attention import OPTCacheFlowAttention
|
|
|
|
from cacheflow.models.sample import Sampler
|
2023-03-10 09:58:21 -08:00
|
|
|
from cacheflow.sequence import SequenceOutputs
|
2023-02-23 09:31:55 +00:00
|
|
|
|
|
|
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
|
|
|
2023-02-09 11:25:37 +00:00
|
|
|
|
|
|
|
class OPTLearnedPositionalEmbedding(nn.Embedding):
|
|
|
|
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int):
|
|
|
|
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
|
|
|
|
# and adjust num_embeddings appropriately. Other models don't have this hack
|
|
|
|
self.offset = 2
|
|
|
|
super().__init__(num_embeddings + self.offset, embedding_dim)
|
|
|
|
|
|
|
|
def forward(self, positions: torch.LongTensor):
|
|
|
|
return super().forward(positions + self.offset)
|
|
|
|
|
|
|
|
|
|
|
|
class OPTAttention(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
embed_dim: int,
|
|
|
|
num_heads: int,
|
|
|
|
bias: bool = True,
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.embed_dim = embed_dim
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.head_dim = embed_dim // num_heads
|
|
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
|
2023-02-23 09:31:55 +00:00
|
|
|
# TODO(woosuk): Fuse the three linear layers into one QKV linear layer.
|
2023-02-09 11:25:37 +00:00
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
|
2023-02-23 09:31:55 +00:00
|
|
|
self.attn = OPTCacheFlowAttention(scale=self.scaling)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
kv_cache: KVCache,
|
|
|
|
input_metadata: InputMetadata,
|
|
|
|
cache_event: Optional[torch.cuda.Event],
|
|
|
|
) -> torch.Tensor:
|
|
|
|
q = self.q_proj(hidden_states)
|
2023-02-09 11:25:37 +00:00
|
|
|
k = self.k_proj(hidden_states)
|
|
|
|
v = self.v_proj(hidden_states)
|
2023-02-23 09:31:55 +00:00
|
|
|
key_cache, value_cache = kv_cache
|
|
|
|
attn_output = self.attn(
|
|
|
|
q, k, v, key_cache, value_cache, input_metadata, cache_event)
|
2023-02-09 11:25:37 +00:00
|
|
|
output = self.out_proj(attn_output)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class OPTDecoderLayer(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
|
|
super().__init__()
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
|
self.self_attn = OPTAttention(
|
|
|
|
embed_dim=self.embed_dim,
|
|
|
|
num_heads=config.num_attention_heads,
|
|
|
|
bias=config.enable_bias,
|
|
|
|
)
|
|
|
|
self.do_layer_norm_before = config.do_layer_norm_before
|
|
|
|
assert config.activation_function == 'relu'
|
|
|
|
self.activation_fn = nn.ReLU()
|
|
|
|
|
|
|
|
self.self_attn_layer_norm = nn.LayerNorm(
|
|
|
|
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
|
|
|
|
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias)
|
|
|
|
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias)
|
|
|
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
|
|
|
|
|
2023-02-23 09:31:55 +00:00
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
kv_cache: KVCache,
|
|
|
|
input_metadata: InputMetadata,
|
|
|
|
cache_event: Optional[torch.cuda.Event],
|
|
|
|
) -> torch.Tensor:
|
2023-02-09 11:25:37 +00:00
|
|
|
# Self Attention
|
|
|
|
residual = hidden_states
|
|
|
|
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
|
|
|
if self.do_layer_norm_before:
|
|
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
2023-02-23 09:31:55 +00:00
|
|
|
hidden_states = self.self_attn(
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
kv_cache=kv_cache,
|
|
|
|
input_metadata=input_metadata,
|
|
|
|
cache_event=cache_event)
|
2023-02-09 11:25:37 +00:00
|
|
|
hidden_states = residual + hidden_states
|
|
|
|
# 350m applies layer norm AFTER attention
|
|
|
|
if not self.do_layer_norm_before:
|
|
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
|
|
|
|
|
|
# Fully Connected
|
|
|
|
residual = hidden_states
|
|
|
|
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
|
|
|
if self.do_layer_norm_before:
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
|
|
hidden_states = self.fc1(hidden_states)
|
|
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
|
|
hidden_states = self.fc2(hidden_states)
|
|
|
|
hidden_states = residual + hidden_states
|
|
|
|
# 350m applies layer norm AFTER attention
|
|
|
|
if not self.do_layer_norm_before:
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class OPTPreTrainedModel(PreTrainedModel):
|
|
|
|
config_class = OPTConfig
|
|
|
|
base_model_prefix = "model"
|
|
|
|
supports_gradient_checkpointing = True
|
|
|
|
_no_split_modules = ["OPTDecoderLayer"]
|
|
|
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
|
|
|
|
|
|
|
def _init_weights(self, module) -> None:
|
|
|
|
del module # unused
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
class OPTDecoder(OPTPreTrainedModel):
|
|
|
|
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
|
|
super().__init__(config)
|
|
|
|
self.padding_idx = config.pad_token_id
|
|
|
|
self.max_target_positions = config.max_position_embeddings
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
|
|
|
|
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
|
|
|
|
|
|
|
|
if config.word_embed_proj_dim != config.hidden_size:
|
|
|
|
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
|
|
|
|
else:
|
|
|
|
self.project_out = None
|
|
|
|
|
|
|
|
if config.word_embed_proj_dim != config.hidden_size:
|
|
|
|
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
|
|
|
|
else:
|
|
|
|
self.project_in = None
|
|
|
|
|
|
|
|
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
|
|
|
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
|
|
|
# see https://github.com/facebookresearch/metaseq/pull/164
|
|
|
|
if config.do_layer_norm_before and not config._remove_final_layer_norm:
|
|
|
|
self.final_layer_norm = nn.LayerNorm(
|
|
|
|
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
self.final_layer_norm = None
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: torch.LongTensor,
|
|
|
|
positions: torch.LongTensor,
|
2023-02-23 09:31:55 +00:00
|
|
|
kv_caches: List[KVCache],
|
|
|
|
input_metadata: InputMetadata,
|
|
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
2023-02-09 11:25:37 +00:00
|
|
|
) -> torch.Tensor:
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
pos_embeds = self.embed_positions(positions)
|
|
|
|
if self.project_in is not None:
|
|
|
|
inputs_embeds = self.project_in(inputs_embeds)
|
|
|
|
hidden_states = inputs_embeds + pos_embeds
|
|
|
|
|
2023-02-23 09:31:55 +00:00
|
|
|
for i in range(len(self.layers)):
|
|
|
|
if cache_events is None:
|
|
|
|
cache_event = None
|
|
|
|
else:
|
|
|
|
cache_event = cache_events[i]
|
|
|
|
layer = self.layers[i]
|
|
|
|
hidden_states = layer(
|
|
|
|
hidden_states, kv_caches[i], input_metadata, cache_event)
|
2023-02-09 11:25:37 +00:00
|
|
|
|
|
|
|
if self.final_layer_norm is not None:
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
|
|
if self.project_out is not None:
|
|
|
|
hidden_states = self.project_out(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class OPTModel(OPTPreTrainedModel):
|
|
|
|
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
|
|
super().__init__(config)
|
|
|
|
self.decoder = OPTDecoder(config)
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: torch.LongTensor,
|
|
|
|
positions: torch.LongTensor,
|
2023-02-23 09:31:55 +00:00
|
|
|
kv_caches: List[KVCache],
|
|
|
|
input_metadata: InputMetadata,
|
|
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
2023-02-09 11:25:37 +00:00
|
|
|
) -> torch.Tensor:
|
2023-02-23 09:31:55 +00:00
|
|
|
return self.decoder(
|
|
|
|
input_ids, positions, kv_caches, input_metadata, cache_events)
|
2023-02-09 11:25:37 +00:00
|
|
|
|
|
|
|
|
|
|
|
class OPTForCausalLM(OPTPreTrainedModel):
|
|
|
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
|
|
|
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__(config)
|
|
|
|
self.model = OPTModel(config)
|
|
|
|
# the lm_head weight is automatically tied to the embed tokens weight
|
|
|
|
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
|
2023-02-23 20:30:12 +00:00
|
|
|
self.sampler = Sampler()
|
2023-02-09 11:25:37 +00:00
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
2023-02-24 16:29:36 -08:00
|
|
|
# NOTE(woosuk): While the following methods are not called in the model code,
|
|
|
|
# they may be internally used by the transformers library.
|
|
|
|
# For example, tie_weights() does not work without these methods.
|
|
|
|
# Thus, do not delete these methods.
|
|
|
|
def get_input_embeddings(self):
|
|
|
|
return self.model.decoder.embed_tokens
|
|
|
|
|
|
|
|
def set_input_embeddings(self, value):
|
|
|
|
self.model.decoder.embed_tokens = value
|
|
|
|
|
|
|
|
def get_output_embeddings(self):
|
|
|
|
return self.lm_head
|
|
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
|
|
self.lm_head = new_embeddings
|
|
|
|
|
|
|
|
def set_decoder(self, decoder):
|
|
|
|
self.model.decoder = decoder
|
|
|
|
|
|
|
|
def get_decoder(self):
|
|
|
|
return self.model.decoder
|
|
|
|
|
2023-02-09 11:25:37 +00:00
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: torch.LongTensor,
|
|
|
|
positions: torch.LongTensor,
|
2023-02-23 09:31:55 +00:00
|
|
|
kv_caches: List[KVCache],
|
|
|
|
input_metadata: InputMetadata,
|
|
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
2023-03-10 09:58:21 -08:00
|
|
|
) -> Dict[int, SequenceOutputs]:
|
2023-02-23 09:31:55 +00:00
|
|
|
hidden_states = self.model(
|
|
|
|
input_ids, positions, kv_caches, input_metadata, cache_events)
|
2023-02-23 20:30:12 +00:00
|
|
|
next_tokens = self.sampler(
|
|
|
|
self.lm_head.weight, hidden_states, input_metadata)
|
2023-02-23 09:31:55 +00:00
|
|
|
return next_tokens
|