vllm/examples/offline_inference_vision_language.py

298 lines
8.6 KiB
Python
Raw Normal View History

"""
This example shows how to use vLLM for running offline inference
with the correct prompt format on vision language models.
For most models, the prompt format should follow corresponding examples
on HuggingFace model repository.
"""
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from vllm.assets.video import VideoAsset
from vllm.utils import FlexibleArgumentParser
# LLaVA-1.5
def run_llava(question):
prompt = f"USER: <image>\n{question}\nASSISTANT:"
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
stop_token_ids = None
return llm, prompt, stop_token_ids
# LLaVA-1.6/LLaVA-NeXT
def run_llava_next(question):
prompt = f"[INST] <image>\n{question} [/INST]"
llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf", max_model_len=8192)
stop_token_ids = None
return llm, prompt, stop_token_ids
# LlaVA-NeXT-Video
# Currently only support for video input
def run_llava_next_video(question):
prompt = f"USER: <video>\n{question} ASSISTANT:"
llm = LLM(model="llava-hf/LLaVA-NeXT-Video-7B-hf", max_model_len=8192)
stop_token_ids = None
return llm, prompt, stop_token_ids
# Fuyu
def run_fuyu(question):
prompt = f"{question}\n"
llm = LLM(model="adept/fuyu-8b")
stop_token_ids = None
return llm, prompt, stop_token_ids
# Phi-3-Vision
def run_phi3v(question):
prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" # noqa: E501
# Note: The default setting of max_num_seqs (256) and
# max_model_len (128k) for this model may cause OOM.
# You may lower either to run this example on lower-end GPUs.
# In this example, we override max_num_seqs to 5 while
# keeping the original context length of 128k.
llm = LLM(
model="microsoft/Phi-3-vision-128k-instruct",
trust_remote_code=True,
max_num_seqs=5,
)
stop_token_ids = None
return llm, prompt, stop_token_ids
# PaliGemma
def run_paligemma(question):
# PaliGemma has special prompt format for VQA
prompt = "caption en"
llm = LLM(model="google/paligemma-3b-mix-224")
stop_token_ids = None
return llm, prompt, stop_token_ids
# Chameleon
def run_chameleon(question):
prompt = f"{question}<image>"
llm = LLM(model="facebook/chameleon-7b")
stop_token_ids = None
return llm, prompt, stop_token_ids
# MiniCPM-V
def run_minicpmv(question):
# 2.0
# The official repo doesn't work yet, so we need to use a fork for now
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 # noqa
# model_name = "HwwwH/MiniCPM-V-2"
# 2.5
# model_name = "openbmb/MiniCPM-Llama3-V-2_5"
#2.6
model_name = "openbmb/MiniCPM-V-2_6"
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
llm = LLM(
model=model_name,
trust_remote_code=True,
)
# NOTE The stop_token_ids are different for various versions of MiniCPM-V
# 2.0
# stop_token_ids = [tokenizer.eos_id]
# 2.5
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
# 2.6
stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
messages = [{
'role': 'user',
'content': f'(<image>./</image>)\n{question}'
}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
return llm, prompt, stop_token_ids
# InternVL
def run_internvl(question):
model_name = "OpenGVLab/InternVL2-2B"
llm = LLM(
model=model_name,
trust_remote_code=True,
max_num_seqs=5,
)
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
messages = [{'role': 'user', 'content': f"<image>\n{question}"}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
# Stop tokens for InternVL
# models variants may have different stop tokens
# please refer to the model card for the correct "stop words":
# https://huggingface.co/OpenGVLab/InternVL2-2B#service
stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"]
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
return llm, prompt, stop_token_ids
# BLIP-2
def run_blip2(question):
# BLIP-2 prompt format is inaccurate on HuggingFace model repository.
# See https://huggingface.co/Salesforce/blip2-opt-2.7b/discussions/15#64ff02f3f8cf9e4f5b038262 #noqa
prompt = f"Question: {question} Answer:"
llm = LLM(model="Salesforce/blip2-opt-2.7b")
stop_token_ids = None
return llm, prompt, stop_token_ids
# Qwen
def run_qwen_vl(question):
llm = LLM(
model="Qwen/Qwen-VL",
trust_remote_code=True,
max_num_seqs=5,
)
prompt = f"{question}Picture 1: <img></img>\n"
stop_token_ids = None
return llm, prompt, stop_token_ids
model_example_map = {
"llava": run_llava,
"llava-next": run_llava_next,
"llava-next-video": run_llava_next_video,
"fuyu": run_fuyu,
"phi3_v": run_phi3v,
"paligemma": run_paligemma,
"chameleon": run_chameleon,
"minicpmv": run_minicpmv,
"blip-2": run_blip2,
"internvl_chat": run_internvl,
"qwen_vl": run_qwen_vl,
}
def get_multi_modal_input(args):
"""
return {
"data": image or video,
"question": question,
}
"""
if args.modality == "image":
# Input image and question
image = ImageAsset("cherry_blossom") \
.pil_image.convert("RGB")
img_question = "What is the content of this image?"
return {
"data": image,
"question": img_question,
}
if args.modality == "video":
# Input video and question
video = VideoAsset(name="sample_demo_1.mp4",
num_frames=args.num_frames).np_ndarrays
vid_question = "Why is this video funny?"
return {
"data": video,
"question": vid_question,
}
msg = f"Modality {args.modality} is not supported."
raise ValueError(msg)
def main(args):
model = args.model_type
if model not in model_example_map:
raise ValueError(f"Model type {model} is not supported.")
modality = args.modality
mm_input = get_multi_modal_input(args)
data = mm_input["data"]
question = mm_input["question"]
llm, prompt, stop_token_ids = model_example_map[model](question)
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
sampling_params = SamplingParams(temperature=0.2,
max_tokens=64,
stop_token_ids=stop_token_ids)
assert args.num_prompts > 0
if args.num_prompts == 1:
# Single inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
modality: data
},
}
else:
# Batch inference
inputs = [{
"prompt": prompt,
"multi_modal_data": {
modality: data
},
} for _ in range(args.num_prompts)]
outputs = llm.generate(inputs, sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Demo on using vLLM for offline inference with '
'vision language models')
parser.add_argument('--model-type',
'-m',
type=str,
default="llava",
choices=model_example_map.keys(),
help='Huggingface "model_type".')
parser.add_argument('--num-prompts',
type=int,
default=4,
help='Number of prompts to run.')
parser.add_argument('--modality',
type=str,
default="image",
help='Modality of the input.')
parser.add_argument('--num-frames',
type=int,
default=16,
help='Number of frames to extract from the video.')
args = parser.parse_args()
main(args)