33 lines
1.3 KiB
Python
33 lines
1.3 KiB
Python
![]() |
import pytest
|
||
|
|
||
|
from vllm.entrypoints.llm import LLM
|
||
|
from vllm.sampling_params import SamplingParams
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("model", ["facebook/opt-125m"])
|
||
|
def test_computed_prefix_blocks(model: str):
|
||
|
# This test checks if the engine generates completions both with and
|
||
|
# without optional detokenization, that detokenization includes text
|
||
|
# and no-detokenization doesn't, and that both completions have the same
|
||
|
# token_ids.
|
||
|
prompt = (
|
||
|
"You are a helpful assistant. How do I build a car from cardboard and "
|
||
|
"paper clips? Is there an easy to follow video tutorial available "
|
||
|
"online for free?")
|
||
|
|
||
|
llm = LLM(model=model)
|
||
|
sampling_params = SamplingParams(max_tokens=10,
|
||
|
temperature=0.0,
|
||
|
detokenize=False)
|
||
|
|
||
|
outputs_no_detokenization = llm.generate(prompt,
|
||
|
sampling_params)[0].outputs[0]
|
||
|
sampling_params.detokenize = True
|
||
|
outputs_with_detokenization = llm.generate(prompt,
|
||
|
sampling_params)[0].outputs[0]
|
||
|
|
||
|
assert outputs_no_detokenization.text == ''
|
||
|
assert outputs_with_detokenization.text != ''
|
||
|
assert outputs_no_detokenization.token_ids == \
|
||
|
outputs_with_detokenization.token_ids
|