vllm/tests/kernels.py

56 lines
1.8 KiB
Python
Raw Normal View History

2023-02-18 19:23:07 +00:00
import random
import torch
from cacheflow.ops import reshape_and_cache
def test_reshape_and_cache(
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
) -> None:
num_slots = block_size * num_blocks
slot_mapping = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int, device='cuda')
kv_shape = (num_tokens, num_heads, head_size)
key = torch.randn(size=kv_shape, dtype=dtype, device='cuda')
value = torch.randn(size=kv_shape, dtype=dtype, device='cuda')
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
key_cache = torch.randn(size=key_cache_shape, dtype=dtype, device='cuda')
cloned_key_cache = key_cache.clone()
value_cache_shape = (num_blocks, num_heads, block_size, head_size)
value_cache = torch.randn(
size=value_cache_shape, dtype=dtype, device='cuda')
cloned_value_cache = value_cache.clone()
reshape_and_cache(key, value, key_cache, value_cache, slot_mapping)
for i in range(num_tokens):
reshaped_key = key.reshape(num_tokens, num_heads, head_size // x, x)
block_idx = slot_mapping[i] // block_size
block_offset = slot_mapping[i] % block_size
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
cloned_value_cache[block_idx, :, block_offset, :] = value[i]
assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache)
@torch.no_grad()
def test_kernels():
test_reshape_and_cache(
num_tokens=3, num_heads=2, head_size=16, block_size=2, num_blocks=2,
dtype=torch.half)
if __name__ == '__main__':
test_kernels()