vllm/tests/models/test_marlin.py

80 lines
2.6 KiB
Python
Raw Normal View History

"""Compare the outputs of a GPTQ model to a Marlin model.
Note: GPTQ and Marlin do not have bitwise correctness.
As a result, in this test, we just confirm that the top selected tokens of the
Marlin/GPTQ models are in the top 3 selections of each other.
Note: Marlin internally uses locks to synchronize the threads. This can
result in very slight nondeterminism for Marlin. As a result, we re-run the test
up to 3 times to see if we pass.
Run `pytest tests/models/test_marlin.py`.
"""
2024-03-25 23:59:47 +09:00
from dataclasses import dataclass
import pytest
import torch
2024-03-25 23:59:47 +09:00
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from .utils import check_logprobs_close
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (capability <
QUANTIZATION_METHODS["marlin"].get_min_capability())
@dataclass
class ModelPair:
model_marlin: str
model_gptq: str
model_pairs = [
ModelPair(model_marlin="nm-testing/zephyr-beta-7b-marlin-g128",
model_gptq="nm-testing/zephyr-beta-7b-gptq-g128"),
ModelPair(model_marlin="robertgshaw2/zephyr-7b-beta-channelwise-marlin",
model_gptq="robertgshaw2/zephyr-7b-beta-channelwise-gptq"),
ModelPair(model_marlin="robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-marlin",
model_gptq="robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-gptq")
]
@pytest.mark.flaky(reruns=2)
@pytest.mark.skipif(marlin_not_supported,
reason="Marlin is not supported on this GPU type.")
@pytest.mark.parametrize("model_pair", model_pairs)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models(
vllm_runner,
example_prompts,
model_pair: ModelPair,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
marlin_model = vllm_runner(model_pair.model_marlin,
dtype=dtype,
quantization="marlin")
marlin_outputs = marlin_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
del marlin_model
gptq_model = vllm_runner(model_pair.model_gptq,
dtype=dtype,
quantization="gptq")
gptq_outputs = gptq_model.generate_greedy_logprobs(example_prompts,
max_tokens,
num_logprobs)
del gptq_model
check_logprobs_close(
outputs_0_lst=gptq_outputs,
outputs_1_lst=marlin_outputs,
name_0="gptq",
name_1="marlin",
)