2024-05-23 17:29:18 -04:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from vllm._C import ops
|
|
|
|
|
|
|
|
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
|
|
|
HIDDEN_SIZES = [16, 67, 768, 2048, 5120, 8192] # Arbitrary values for testing
|
|
|
|
NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
|
|
|
|
SEEDS = [0]
|
|
|
|
SCALE = [0.1, 0.5, 0.8, 1.2, 2.1]
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
|
|
@pytest.mark.parametrize("scale", SCALE)
|
|
|
|
@torch.inference_mode()
|
|
|
|
def test_quant(num_tokens: int, hidden_size: int, dtype: torch.dtype,
|
|
|
|
seed: int, scale: float) -> None:
|
|
|
|
torch.random.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000
|
|
|
|
|
|
|
|
out1 = (x / scale).round().clamp(
|
|
|
|
torch.iinfo(torch.int8).min,
|
|
|
|
torch.iinfo(torch.int8).max).to(torch.int8)
|
|
|
|
out2 = torch.empty_like(x, dtype=torch.int8)
|
2024-06-03 12:52:30 -04:00
|
|
|
scale_argument = torch.tensor([scale], dtype=torch.float32, device="cuda")
|
|
|
|
|
|
|
|
ops.static_scaled_int8_quant(out2, x, scale_argument)
|
2024-05-23 17:29:18 -04:00
|
|
|
assert torch.allclose(out1, out2,
|
|
|
|
atol=1) # big atol to account for rounding errors
|