66 lines
2.2 KiB
Python
66 lines
2.2 KiB
Python
![]() |
"""Compare the outputs of HF and vLLM when using greedy sampling.
|
||
|
|
||
|
It tests chunked prefill. Chunked prefill can be enabled by
|
||
|
enable_chunked_prefill=True. If prefill size exceeds max_num_batched_tokens,
|
||
|
prefill requests are chunked.
|
||
|
|
||
|
Run `pytest tests/models/test_chunked_prefill.py`.
|
||
|
"""
|
||
|
import pytest
|
||
|
|
||
|
MODELS = [
|
||
|
"facebook/opt-125m",
|
||
|
"meta-llama/Llama-2-7b-hf",
|
||
|
]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("model", MODELS)
|
||
|
@pytest.mark.parametrize("dtype", ["half"])
|
||
|
@pytest.mark.parametrize("max_tokens", [32])
|
||
|
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
|
||
|
@pytest.mark.parametrize("enforce_eager", [False, True])
|
||
|
# NOTE: Increasing this in this suite will fail CI because we currently cannot
|
||
|
# reset distributed env properly. Use a value > 1 just when you test.
|
||
|
@pytest.mark.parametrize("tensor_parallel_size", [1])
|
||
|
def test_models(
|
||
|
hf_runner,
|
||
|
vllm_runner,
|
||
|
example_prompts,
|
||
|
model: str,
|
||
|
dtype: str,
|
||
|
max_tokens: int,
|
||
|
chunked_prefill_token_size: int,
|
||
|
enforce_eager: bool,
|
||
|
tensor_parallel_size: int,
|
||
|
) -> None:
|
||
|
max_num_seqs = min(chunked_prefill_token_size, 256)
|
||
|
enable_chunked_prefill = False
|
||
|
max_num_batched_tokens = None
|
||
|
if chunked_prefill_token_size != -1:
|
||
|
enable_chunked_prefill = True
|
||
|
max_num_batched_tokens = chunked_prefill_token_size
|
||
|
|
||
|
hf_model = hf_runner(model, dtype=dtype)
|
||
|
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
||
|
del hf_model
|
||
|
|
||
|
vllm_model = vllm_runner(
|
||
|
model,
|
||
|
dtype=dtype,
|
||
|
max_num_batched_tokens=max_num_batched_tokens,
|
||
|
enable_chunked_prefill=enable_chunked_prefill,
|
||
|
tensor_parallel_size=tensor_parallel_size,
|
||
|
enforce_eager=enforce_eager,
|
||
|
max_num_seqs=max_num_seqs,
|
||
|
)
|
||
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
||
|
del vllm_model
|
||
|
|
||
|
for i in range(len(example_prompts)):
|
||
|
hf_output_ids, hf_output_str = hf_outputs[i]
|
||
|
vllm_output_ids, vllm_output_str = vllm_outputs[i]
|
||
|
assert hf_output_str == vllm_output_str, (
|
||
|
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
||
|
assert hf_output_ids == vllm_output_ids, (
|
||
|
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|