vllm/README.md

150 lines
8.6 KiB
Markdown
Raw Normal View History

2023-06-19 16:31:13 +08:00
<p align="center">
<picture>
2023-06-20 11:15:15 +08:00
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
2023-06-19 16:31:13 +08:00
</picture>
</p>
2023-02-24 12:04:49 +00:00
2023-06-19 16:31:13 +08:00
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
2023-02-24 12:04:49 +00:00
2023-06-19 16:31:13 +08:00
<p align="center">
2024-10-07 17:06:21 -07:00
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
2023-06-19 16:31:13 +08:00
</p>
2023-02-24 12:04:49 +00:00
---
The first vLLM meetup in 2025 is happening on January 22nd, Wednesday, with Google Cloud in San Francisco! We will talk about vLLM's performant V1 architecture, Q1 roadmap, Google Cloud's innovation around vLLM: networking, Cloud Run, Vertex, and TPU! [Register Now](https://lu.ma/zep56hui)
---
2023-06-19 16:31:13 +08:00
*Latest News* 🔥
2024-12-10 18:08:10 +11:00
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
- [2024/09] We hosted [the sixth vLLM meetup](https://lu.ma/87q3nvnh) with NVIDIA! Please find the meetup slides [here](https://docs.google.com/presentation/d/1wrLGwytQfaOTd5wCGSPNhoaW3nq0E-9wqyP7ny93xRs/edit?usp=sharing).
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
2024-06-13 10:18:26 -07:00
- [2024/06] We hosted [the fourth vLLM meetup](https://lu.ma/agivllm) with Cloudflare and BentoML! Please find the meetup slides [here](https://docs.google.com/presentation/d/1iJ8o7V2bQEi0BFEljLTwc5G1S10_Rhv3beed5oB0NJ4/edit?usp=sharing).
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
2024-07-12 19:36:53 -07:00
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) with IBM! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) with a16z! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
2023-08-31 17:18:34 -07:00
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
2023-06-25 16:58:06 -07:00
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
2023-06-19 16:31:13 +08:00
---
## About
2023-06-19 19:58:23 -07:00
vLLM is a fast and easy-to-use library for LLM inference and serving.
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
vLLM is fast with:
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
2024-08-11 17:13:37 -07:00
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
- Speculative decoding
- Chunked prefill
2023-06-19 16:31:13 +08:00
**Performance benchmark**: We include a performance benchmark at the end of [our blog post](https://blog.vllm.ai/2024/09/05/perf-update.html). It compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [SGLang](https://github.com/sgl-project/sglang) and [LMDeploy](https://github.com/InternLM/lmdeploy)). The implementation is under [nightly-benchmarks folder](.buildkite/nightly-benchmarks/) and you can [reproduce](https://github.com/vllm-project/vllm/issues/8176) this benchmark using our one-click runnable script.
2023-06-19 16:31:13 +08:00
vLLM is flexible and easy to use with:
2023-09-14 04:55:23 +09:00
- Seamless integration with popular Hugging Face models
2023-06-19 16:31:13 +08:00
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism and pipeline parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
2024-08-11 17:13:37 -07:00
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
- Prefix caching support
- Multi-lora support
2023-03-29 14:48:56 +08:00
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
2024-08-11 17:13:37 -07:00
- Embedding Models (e.g. E5-Mistral)
- Multi-modal LLMs (e.g., LLaVA)
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
## Getting Started
2024-08-11 17:13:37 -07:00
Install vLLM with `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
2023-06-19 16:31:13 +08:00
```bash
pip install vllm
```
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to learn more.
2023-06-19 20:03:40 -07:00
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [List of Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
2023-06-19 16:31:13 +08:00
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
2023-09-13 17:38:13 -07:00
## Sponsors
vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!
<!-- Note: Please sort them in alphabetical order. -->
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
Cash Donations:
- a16z
- Dropbox
- Sequoia Capital
- Skywork AI
- ZhenFund
Compute Resources:
- AMD
- Anyscale
- AWS
- Crusoe Cloud
- Databricks
- DeepInfra
- Google Cloud
- Lambda Lab
- Nebius
- Novita AI
- NVIDIA
- Replicate
- Roblox
- RunPod
- Trainy
- UC Berkeley
- UC San Diego
Slack Sponsor: Anyscale
We also have an official fundraising venue through [OpenCollective](https://opencollective.com/vllm). We plan to use the fund to support the development, maintenance, and adoption of vLLM.
2023-09-13 17:38:13 -07:00
## Citation
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
2023-09-13 17:38:13 -07:00
author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
year={2023}
}
```
## Contact Us
* For technical questions and feature requests, please use Github issues or discussions.
* For discussing with fellow users, please use Discord.
2024-10-17 00:46:46 -04:00
* For coordinating contributions and development, please use Slack.
* For security disclosures, please use Github's security advisory feature.
2024-10-04 10:17:16 -07:00
* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
2024-12-11 17:33:11 -08:00
## Media Kit
* If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).