2023-03-22 04:45:42 +08:00
|
|
|
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
|
|
|
|
|
|
# Parts of the code here are adapted from PyTorch
|
|
|
|
# repo: https://github.com/pytorch/pytorch
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torch.nn.init as init
|
|
|
|
from torch.nn.parameter import Parameter
|
|
|
|
|
|
|
|
from cacheflow.parallel_utils.parallel_state import (
|
|
|
|
get_tensor_model_parallel_rank,
|
|
|
|
get_tensor_model_parallel_world_size,
|
|
|
|
)
|
|
|
|
from .mappings import (
|
|
|
|
copy_to_tensor_model_parallel_region,
|
|
|
|
gather_from_tensor_model_parallel_region,
|
|
|
|
reduce_from_tensor_model_parallel_region,
|
|
|
|
scatter_to_tensor_model_parallel_region,
|
|
|
|
)
|
|
|
|
|
|
|
|
from .random import get_cuda_rng_tracker
|
|
|
|
from .utils import (
|
|
|
|
divide,
|
|
|
|
VocabUtility,
|
|
|
|
)
|
|
|
|
|
|
|
|
_MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
|
|
|
|
'partition_dim': -1,
|
|
|
|
'partition_stride': 1}
|
|
|
|
|
|
|
|
def param_is_not_tensor_parallel_duplicate(param):
|
|
|
|
return (hasattr(param, 'tensor_model_parallel') and
|
|
|
|
param.tensor_model_parallel) or (
|
|
|
|
get_tensor_model_parallel_rank() == 0)
|
|
|
|
|
|
|
|
|
|
|
|
def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride):
|
|
|
|
# Make sure the attributes are not set.
|
|
|
|
for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
|
|
|
|
assert not hasattr(tensor, attribute)
|
|
|
|
# Set the attributes.
|
|
|
|
setattr(tensor, 'tensor_model_parallel', is_parallel)
|
|
|
|
setattr(tensor, 'partition_dim', dim)
|
|
|
|
setattr(tensor, 'partition_stride', stride)
|
|
|
|
|
|
|
|
|
|
|
|
def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor):
|
|
|
|
def maybe_set(attribute, value):
|
|
|
|
if not hasattr(tensor, attribute):
|
|
|
|
setattr(tensor, attribute, value)
|
|
|
|
for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
|
|
|
|
maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute])
|
|
|
|
|
|
|
|
|
|
|
|
def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor):
|
|
|
|
def maybe_copy(attribute):
|
|
|
|
if hasattr(source_tensor, attribute):
|
|
|
|
setattr(destination_tensor, attribute,
|
|
|
|
getattr(source_tensor, attribute))
|
|
|
|
for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
|
|
|
|
maybe_copy(attribute)
|
|
|
|
|
|
|
|
|
|
|
|
def _initialize_affine_weight_gpu(weight, init_method,
|
|
|
|
partition_dim, stride=1):
|
|
|
|
"""Initialize affine weight for model parallel on GPU."""
|
|
|
|
|
|
|
|
set_tensor_model_parallel_attributes(tensor=weight,
|
|
|
|
is_parallel=True,
|
|
|
|
dim=partition_dim,
|
|
|
|
stride=stride)
|
|
|
|
|
|
|
|
with get_cuda_rng_tracker().fork():
|
|
|
|
init_method(weight)
|
|
|
|
|
|
|
|
|
|
|
|
def _initialize_affine_weight_cpu(weight, output_size, input_size,
|
|
|
|
per_partition_size, partition_dim,
|
|
|
|
init_method, stride=1,
|
|
|
|
return_master_weight=False,
|
|
|
|
*, params_dtype=None):
|
|
|
|
"""Initialize affine weight for model parallel.
|
|
|
|
|
|
|
|
Build the master weight on all processes and scatter
|
|
|
|
the relevant chunk."""
|
|
|
|
|
|
|
|
set_tensor_model_parallel_attributes(tensor=weight,
|
|
|
|
is_parallel=True,
|
|
|
|
dim=partition_dim,
|
|
|
|
stride=stride)
|
|
|
|
|
|
|
|
if params_dtype is None:
|
|
|
|
params_dtype = torch.get_default_dtype()
|
|
|
|
|
|
|
|
# Initialize master weight
|
|
|
|
master_weight = torch.empty(output_size, input_size,
|
|
|
|
dtype=torch.float,
|
|
|
|
requires_grad=False)
|
|
|
|
init_method(master_weight)
|
|
|
|
master_weight = master_weight.to(dtype=params_dtype)
|
|
|
|
|
|
|
|
# Split and copy
|
|
|
|
per_partition_per_stride_size = divide(per_partition_size, stride)
|
|
|
|
weight_list = torch.split(master_weight, per_partition_per_stride_size,
|
|
|
|
dim=partition_dim)
|
|
|
|
rank = get_tensor_model_parallel_rank()
|
|
|
|
world_size = get_tensor_model_parallel_world_size()
|
|
|
|
my_weight_list = weight_list[rank::world_size]
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
torch.cat(my_weight_list, dim=partition_dim, out=weight)
|
|
|
|
if return_master_weight:
|
|
|
|
return master_weight
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
class VocabParallelEmbedding(torch.nn.Module):
|
|
|
|
"""Embedding parallelized in the vocabulary dimension.
|
|
|
|
|
|
|
|
This is mainly adapted from torch.nn.Embedding and all the default
|
|
|
|
values are kept.
|
|
|
|
Arguments:
|
|
|
|
num_embeddings: vocabulary size.
|
|
|
|
embedding_dim: size of hidden state.
|
|
|
|
|
|
|
|
Keyword Arguments:
|
|
|
|
init_method: method to initialize weights.
|
|
|
|
params_dtype
|
|
|
|
use_cpu_initialization
|
|
|
|
perform_initialization
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, *,
|
|
|
|
init_method=init.xavier_normal_,
|
|
|
|
params_dtype: torch.dtype=None,
|
|
|
|
use_cpu_initialization: bool=False,
|
|
|
|
perform_initialization: bool=True):
|
|
|
|
super(VocabParallelEmbedding, self).__init__()
|
|
|
|
# Keep the input dimensions.
|
|
|
|
self.num_embeddings = num_embeddings
|
|
|
|
self.embedding_dim = embedding_dim
|
|
|
|
if params_dtype is None:
|
|
|
|
params_dtype = torch.get_default_dtype()
|
|
|
|
|
|
|
|
# Set the defaults for compatibility.
|
|
|
|
self.padding_idx = None
|
|
|
|
self.max_norm = None
|
|
|
|
self.norm_type = 2.
|
|
|
|
self.scale_grad_by_freq = False
|
|
|
|
self.sparse = False
|
|
|
|
self._weight = None
|
|
|
|
self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
|
|
|
|
# Divide the weight matrix along the vocaburaly dimension.
|
|
|
|
self.vocab_start_index, self.vocab_end_index = \
|
|
|
|
VocabUtility.vocab_range_from_global_vocab_size(
|
|
|
|
self.num_embeddings, get_tensor_model_parallel_rank(),
|
|
|
|
self.tensor_model_parallel_size)
|
|
|
|
self.num_embeddings_per_partition = self.vocab_end_index - \
|
|
|
|
self.vocab_start_index
|
|
|
|
|
|
|
|
# Allocate weights and initialize.
|
|
|
|
if use_cpu_initialization:
|
|
|
|
self.weight = Parameter(torch.empty(
|
|
|
|
self.num_embeddings_per_partition, self.embedding_dim,
|
|
|
|
dtype=params_dtype))
|
|
|
|
if perform_initialization:
|
|
|
|
_initialize_affine_weight_cpu(
|
|
|
|
self.weight, self.num_embeddings, self.embedding_dim,
|
|
|
|
self.num_embeddings_per_partition, 0, init_method,
|
|
|
|
params_dtype=params_dtype)
|
|
|
|
else:
|
|
|
|
self.weight = Parameter(torch.empty(
|
|
|
|
self.num_embeddings_per_partition, self.embedding_dim,
|
|
|
|
device=torch.cuda.current_device(), dtype=params_dtype))
|
|
|
|
if perform_initialization:
|
|
|
|
_initialize_affine_weight_gpu(self.weight, init_method,
|
|
|
|
partition_dim=0, stride=1)
|
|
|
|
|
|
|
|
def forward(self, input_):
|
|
|
|
if self.tensor_model_parallel_size > 1:
|
|
|
|
# Build the mask.
|
|
|
|
input_mask = (input_ < self.vocab_start_index) | \
|
|
|
|
(input_ >= self.vocab_end_index)
|
|
|
|
# Mask the input.
|
|
|
|
masked_input = input_.clone() - self.vocab_start_index
|
|
|
|
masked_input[input_mask] = 0
|
|
|
|
else:
|
|
|
|
masked_input = input_
|
|
|
|
# Get the embeddings.
|
|
|
|
output_parallel = F.embedding(masked_input, self.weight,
|
|
|
|
self.padding_idx, self.max_norm,
|
|
|
|
self.norm_type, self.scale_grad_by_freq,
|
|
|
|
self.sparse)
|
|
|
|
# Mask the output embedding.
|
|
|
|
if self.tensor_model_parallel_size > 1:
|
|
|
|
output_parallel[input_mask, :] = 0.0
|
|
|
|
# Reduce across all the model parallel GPUs.
|
|
|
|
output = reduce_from_tensor_model_parallel_region(output_parallel)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class ColumnParallelLinear(torch.nn.Module):
|
|
|
|
"""Linear layer with column parallelism.
|
|
|
|
|
|
|
|
The linear layer is defined as Y = XA + b. A is parallelized along
|
|
|
|
its second dimension as A = [A_1, ..., A_p].
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
input_size: first dimension of matrix A.
|
|
|
|
output_size: second dimension of matrix A.
|
|
|
|
|
|
|
|
Keyword Arguments
|
|
|
|
bias: If true, add bias
|
|
|
|
gather_output: If true, call all-gather on output and make Y available
|
|
|
|
to all GPUs, otherwise, every GPU will have its output
|
|
|
|
which is Y_i = XA_i
|
|
|
|
init_method: method to initialize weights. Note that bias is always set
|
|
|
|
to zero.
|
|
|
|
stride: For the strided linear layers.
|
|
|
|
keep_master_weight_for_test: This was added for testing and should be
|
|
|
|
set to False. It returns the master weights
|
|
|
|
used for initialization.
|
|
|
|
skip_bias_add: This was added to enable performance optimations where bias
|
|
|
|
can be fused with other elementwise operations. we skip
|
|
|
|
adding bias but instead return it.
|
|
|
|
params_dtype:
|
|
|
|
use_cpu_initialization:
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, input_size, output_size, *,
|
|
|
|
bias=True, gather_output=True,
|
|
|
|
init_method=init.xavier_normal_, stride=1,
|
|
|
|
keep_master_weight_for_test=False,
|
|
|
|
skip_bias_add=False,
|
|
|
|
params_dtype=None,
|
|
|
|
use_cpu_initialization=False,
|
|
|
|
perform_initialization=True,
|
|
|
|
):
|
|
|
|
super(ColumnParallelLinear, self).__init__()
|
|
|
|
|
|
|
|
# Keep input parameters
|
|
|
|
self.input_size = input_size
|
|
|
|
self.output_size = output_size
|
|
|
|
self.gather_output = gather_output
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
|
|
world_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.output_size_per_partition = divide(output_size, world_size)
|
|
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
|
|
|
|
if params_dtype is None:
|
|
|
|
params_dtype = torch.get_default_dtype()
|
|
|
|
|
|
|
|
# Parameters.
|
|
|
|
# Note: torch.nn.functional.linear performs XA^T + b and as a result
|
|
|
|
# we allocate the transpose.
|
|
|
|
# Initialize weight.
|
|
|
|
if use_cpu_initialization:
|
|
|
|
self.weight = Parameter(torch.empty(self.output_size_per_partition,
|
|
|
|
self.input_size,
|
|
|
|
dtype=params_dtype))
|
|
|
|
if perform_initialization:
|
|
|
|
self.master_weight = _initialize_affine_weight_cpu(
|
|
|
|
self.weight, self.output_size, self.input_size,
|
|
|
|
self.output_size_per_partition, 0, init_method,
|
|
|
|
stride=stride, return_master_weight=keep_master_weight_for_test)
|
|
|
|
else:
|
|
|
|
self.weight = Parameter(torch.empty(
|
|
|
|
self.output_size_per_partition, self.input_size,
|
|
|
|
device=torch.cuda.current_device(), dtype=params_dtype))
|
|
|
|
if perform_initialization:
|
|
|
|
_initialize_affine_weight_gpu(self.weight, init_method,
|
|
|
|
partition_dim=0, stride=stride)
|
|
|
|
|
|
|
|
if bias:
|
|
|
|
if use_cpu_initialization:
|
|
|
|
self.bias = Parameter(torch.empty(
|
|
|
|
self.output_size_per_partition, dtype=params_dtype))
|
|
|
|
else:
|
|
|
|
self.bias = Parameter(torch.empty(
|
|
|
|
self.output_size_per_partition,
|
|
|
|
device=torch.cuda.current_device(),
|
|
|
|
dtype=params_dtype))
|
|
|
|
set_tensor_model_parallel_attributes(self.bias, True, 0, stride)
|
|
|
|
# Always initialize bias to zero.
|
|
|
|
with torch.no_grad():
|
|
|
|
self.bias.zero_()
|
|
|
|
else:
|
|
|
|
self.register_parameter('bias', None)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, input_):
|
|
|
|
"""Forward of ColumnParallelLinear
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_: 3D tensor whose order of dimension is [sequence, batch, hidden]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
- output
|
|
|
|
- bias
|
|
|
|
"""
|
|
|
|
bias = self.bias if not self.skip_bias_add else None
|
|
|
|
|
2023-04-01 00:51:08 +08:00
|
|
|
input_parallel = copy_to_tensor_model_parallel_region(input_)
|
2023-03-22 04:45:42 +08:00
|
|
|
# Matrix multiply.
|
2023-04-01 00:51:08 +08:00
|
|
|
output_parallel = F.linear(input_parallel, self.weight, bias)
|
2023-03-22 04:45:42 +08:00
|
|
|
if self.gather_output:
|
|
|
|
# All-gather across the partitions.
|
|
|
|
output = gather_from_tensor_model_parallel_region(output_parallel)
|
|
|
|
else:
|
|
|
|
output = output_parallel
|
|
|
|
output_bias = self.bias if self.skip_bias_add else None
|
|
|
|
return output, output_bias
|
|
|
|
|
|
|
|
|
|
|
|
class RowParallelLinear(torch.nn.Module):
|
|
|
|
"""Linear layer with row parallelism.
|
|
|
|
|
|
|
|
The linear layer is defined as Y = XA + b. A is parallelized along
|
|
|
|
its first dimension and X along its second dimension as:
|
|
|
|
- -
|
|
|
|
| A_1 |
|
|
|
|
| . |
|
|
|
|
A = | . | X = [X_1, ..., X_p]
|
|
|
|
| . |
|
|
|
|
| A_p |
|
|
|
|
- -
|
|
|
|
Arguments:
|
|
|
|
input_size: first dimension of matrix A.
|
|
|
|
output_size: second dimension of matrix A.
|
|
|
|
|
|
|
|
Keyword Arguments:
|
|
|
|
bias: If true, add bias. Note that bias is not parallelized.
|
|
|
|
input_is_parallel: If true, we assume that the input is already
|
|
|
|
split across the GPUs and we do not split
|
|
|
|
again.
|
|
|
|
init_method: method to initialize weights. Note that bias is always set
|
|
|
|
to zero.
|
|
|
|
stride: For the strided linear layers.
|
|
|
|
keep_master_weight_for_test: This was added for testing and should be
|
|
|
|
set to False. It returns the master weights
|
|
|
|
used for initialization.
|
|
|
|
skip_bias_add: This was added to enable performance optimization where bias
|
|
|
|
can be fused with other elementwise operations. We skip
|
|
|
|
adding bias but instead return it.
|
|
|
|
params_dtype:
|
|
|
|
use_cpu_initialization:
|
|
|
|
perform_initialization:
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, input_size, output_size, *,
|
|
|
|
bias=True, input_is_parallel=False,
|
|
|
|
init_method=init.xavier_normal_, stride=1,
|
|
|
|
keep_master_weight_for_test=False,
|
|
|
|
skip_bias_add=False,
|
|
|
|
params_dtype=None,
|
|
|
|
use_cpu_initialization=False,
|
|
|
|
perform_initialization=True,
|
|
|
|
):
|
|
|
|
super(RowParallelLinear, self).__init__()
|
|
|
|
|
|
|
|
# Keep input parameters
|
|
|
|
self.input_size = input_size
|
|
|
|
self.output_size = output_size
|
|
|
|
self.input_is_parallel = input_is_parallel
|
|
|
|
if params_dtype is None:
|
|
|
|
params_dtype = torch.get_default_dtype()
|
|
|
|
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
|
|
world_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.input_size_per_partition = divide(input_size, world_size)
|
|
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
|
|
|
|
# Parameters.
|
|
|
|
# Note: torch.nn.functional.linear performs XA^T + b and as a result
|
|
|
|
# we allocate the transpose.
|
|
|
|
# Initialize weight.
|
|
|
|
if use_cpu_initialization:
|
|
|
|
self.weight = Parameter(torch.empty(self.output_size,
|
|
|
|
self.input_size_per_partition,
|
|
|
|
dtype=params_dtype))
|
|
|
|
if perform_initialization:
|
|
|
|
self.master_weight = _initialize_affine_weight_cpu(
|
|
|
|
self.weight, self.output_size, self.input_size,
|
|
|
|
self.input_size_per_partition, 1, init_method,
|
|
|
|
stride=stride, return_master_weight=keep_master_weight_for_test,
|
|
|
|
params_dtype=params_dtype)
|
|
|
|
else:
|
|
|
|
self.weight = Parameter(torch.empty(
|
|
|
|
self.output_size, self.input_size_per_partition,
|
|
|
|
device=torch.cuda.current_device(), dtype=params_dtype))
|
|
|
|
if perform_initialization:
|
|
|
|
_initialize_affine_weight_gpu(self.weight, init_method,
|
|
|
|
partition_dim=1, stride=stride)
|
|
|
|
if bias:
|
|
|
|
if use_cpu_initialization:
|
|
|
|
self.bias = Parameter(torch.empty(self.output_size,
|
|
|
|
dtype=params_dtype))
|
|
|
|
else:
|
|
|
|
self.bias = Parameter(torch.empty(
|
|
|
|
self.output_size, device=torch.cuda.current_device(),
|
|
|
|
dtype=params_dtype))
|
|
|
|
|
|
|
|
# Always initialize bias to zero.
|
|
|
|
with torch.no_grad():
|
|
|
|
self.bias.zero_()
|
|
|
|
else:
|
|
|
|
self.register_parameter('bias', None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, input_):
|
|
|
|
"""Forward of RowParallelLinear
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_: 3D tensor whose order of dimension is [sequence, batch, hidden]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
- output
|
|
|
|
- bias
|
|
|
|
"""
|
|
|
|
# Set up backprop all-reduce.
|
|
|
|
if self.input_is_parallel:
|
|
|
|
input_parallel = input_
|
|
|
|
else:
|
|
|
|
input_parallel = scatter_to_tensor_model_parallel_region(input_)
|
|
|
|
# Matrix multiply.
|
2023-04-01 00:51:08 +08:00
|
|
|
output_parallel = F.linear(input_parallel, self.weight)
|
2023-03-22 04:45:42 +08:00
|
|
|
|
|
|
|
# All-reduce across all the partitions.
|
2023-04-01 00:51:08 +08:00
|
|
|
output_ = reduce_from_tensor_model_parallel_region(output_parallel)
|
2023-03-22 04:45:42 +08:00
|
|
|
if not self.skip_bias_add:
|
|
|
|
output = output_ + self.bias if self.bias is not None else output_
|
|
|
|
output_bias = None
|
|
|
|
else:
|
|
|
|
output = output_
|
|
|
|
output_bias = self.bias
|
|
|
|
return output, output_bias
|